BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Open Access
How to translate text using browser tools
1 December 2002 Predicting Life-Cycle Adaptation of Migratory Birds to Global Climate Change
Timothy Coppack, Christiaan Both
Author Affiliations +
Abstract

Analyses of long-term data indicate that human-caused climatic changes are affecting bird phenology in directions consistent with theoretical predictions. Here, we report on recent trends in the timing of spring arrival and egg laying found within a western European Pied Flycatcher Ficedula hypoleuca population. Mean egg laying date has advanced over the past 20 years in this population. The advancement in egg laying date was stronger than the advancement of spring arrival, suggesting that Pied Flycatchers are changing these stages of their annual cycle at different rates. It could be shown that selection for earlier breeding had increased. Hence, the observed adjustment in laying date did not match the advancement of spring. Our findings raise general questions about the adaptability of migratory birds to rapid environmental changes. Adaptive advancement of reproduction in response to increasing spring temperatures and to the concomitant advancement of food supply could be held back, because annual breeding and migration cycles are controlled primarily by endogenous rhythms and photoperiodic cues which do not relate to temperature. Migrants may have several options for arriving earlier on the breeding grounds, including an increase in migration speed, earlier departure from the wintering area or a shortening of migration distance. Changes in migratory behaviour could be accomplished either by phenotypic plasticity or by selection on different genotypes. Although descriptive field data provide compelling evidence for changes in, and possible constraints on, the timing of breeding and migration, their explanatory power in predicting the limits of adaptation remains restricted. We review recent experimental approaches, which explicitly test the relative roles of genetic versus environmental factors in the adaptation of life-cycle timing to global environmental changes.

REFERENCES

1.

T. Alerstam 1990. Bird migration. Cambridge Univ. Press, Cambridge. Google Scholar

2.

A. J. Baker , T. Piersma & L. Rosenmeier 1994. Unraveling the intraspecific phylogeography of Knots Calidris canutas: A progress report on the search for genetic markers. J. Orn. 135: 599–608. Google Scholar

3.

F. Bergmann 1998. Die Wegzugphänologie von Kleinvögeln in Mitteleuropa — Zugzeiten, Zugmuster, Abhängigkeit von der Witterung und langfristige Trends im Zeitpunkt des Durchzugs. PhD-thesis, University of Constance, Constance. Google Scholar

4.

P. Berthold 1991. Patterns of avian migration in light of current global ‘greenhouse’ effects: a central European perspective. Proc. Int. Orn. Congr. 20: 780–786. Google Scholar

5.

P. Berthold 1996. Control of bird migration. Chapman & Hall, London. Google Scholar

6.

P. Berthold 1998. Vogelwelt und Klima: gegenwärtige Veränderungen. Naturwiss. Rundsch. 51: 337–346. Google Scholar

7.

P. Berthold 2001a. Vogelzug: eine neue Theorie zur Evolution, Steuerung und Anpassungsfähigkeit des Zugverhaltens. J. Orn. 142 Suppl. 1: 148–159. Google Scholar

8.

P. Berthold 2001b. Bird migration: a general survey. Oxford Univ. Press, Oxford. Google Scholar

9.

P. Berthold & F. Pulido 1994. Heritability of migratory activity in a natural bird population. Proc. R. Soc. Lond., B. 257: 311–315. Google Scholar

10.

P. Berthold , W. Fiedler , R. Schlenker & U. Querner 1998. 25-year study of the population development of Central European songbirds: a general decline, most evident in long-distance migrants. Naturwiss. 85: 350–353. Google Scholar

11.

E. Bezzel & W. Jetz 1995. Verschiebung der Wegzugperiode bei der Mönchsgrasmücke (Sylvia atricapilla) 1966–1993 — Reaktion auf die Klimaerwärmung? J. Orn. 136: 83–87. Google Scholar

12.

C. Both & M.E. Visser 2001. Adjustment to climate change is constrained by arrival date in a long distance migrant bird. Nature 411: 296–298. Google Scholar

13.

N.L. Bradley , A.C. Leopold , J. Ross & W. Huffaker 1999. Phonological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. USA 96: 9701–9704. Google Scholar

14.

C.R. Brown & M.B. Brown 2000. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav. Ecol. Sociobiol. 47: 339–345. Google Scholar

15.

J.L. Brown , S-H. Li & N. Bhagabati 1999. Long-term trend toward earlier breeding in an American bird: a response to global warming? Proc. Natl. Acad. Sci. USA 96: 5565–5569. Google Scholar

16.

J.F. Burton 1995 Birds and climate change. Christopher Helm, London. Google Scholar

17.

T. Coppack , F. Pulido & P. Berthold 2001. Photoperiodic response to early hatching in a migratory bird species. Oecologia 128: 181–186. Google Scholar

18.

T. Coppack , F. Pulido , M. Czisch , D.P. Auer & P. Berthold in press. Photoperiodic response may facilitate adaptation to climatic change in long-distance migratory birds. Proc. R. Soc. Lond. B (Suppl.) DOI 10.1098/TSBL. 2003.0005. Google Scholar

19.

H.Q.P. Crick & T.H. Sparks 1999. Climate change related to egg-laying trends. Nature 399: 423–424. Google Scholar

20.

H.Q.P. Crick C. Dudley , D.E. Glue & D.L. Thomson 1997. UK birds are laying eggs earlier. Nature 388: 526 Google Scholar

21.

T.J. Crowley 2000. Causes of climate change over the past 1000 years. Science 289: 270–277. Google Scholar

22.

S. Daan , C. Dijkstra , R.H. Drent & T. Meijer 1988. Food supply and the annual timing of reproduction. Proc. 19th Int. Orn. Congr., Ottawa 1986: 392–407. Google Scholar

23.

P.O. Dunn & D.W. Winkler 1999. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond., B 266: 2487–2490. Google Scholar

24.

M. Enquist & J. Petterson 1986. The timing of migration in 104 bird species at Ottenby — an analysis based on 39 years trapping data. Spec. Rep. Ottenby Bird Observ. 8: 1–248. Google Scholar

25.

M. Enquist & J. Petterson 1986. Flyttningens tidsmässiga förlopp hos 104 fågelarter vid Ottenby — en analys baserad på 39 års fångstdata. Rapport från Ottenby fågelstation nr 8. Google Scholar

26.

B.J. Ens , T. Piersma & J.M. Tinbergen 1994. Towards predictive models of bird migration schedules: theoretical and empirical bottlenecks. NIOZ-Rapport 1994–5, Netherlands Institute for Sea Research, Texel. Google Scholar

27.

M.C. Forchhammer , E. Post & N.C. Stenseth 1998. Breeding phenology and climate…. Nature 391: 29–30 Google Scholar

28.

W. Gatter 1992. Zugzeiten und Zugmuster im Herbst: Einfluss des Treibhauseffekts auf den Vogelzug? J. Orn. 133: 427–436. Google Scholar

29.

E. Gwinner 1987. Annual rhythms of gonadal size, migratory disposition and molt in Garden Warblers Sylvia borin exposed in winter to an equatorial or a southern hemisphere photoperiod. Ornis Scand. 18: 251–256. Google Scholar

30.

E. Gwinner 1989. Einfluss der Photoperiode auf das circannuale System des Halsbandschnäppers (Ficedula albicollis) und des Trauerschnäppers (F. hypoleuca). J. Orn. 130: 1–13. Google Scholar

31.

E. Gwinner 1996. Circannual clocks in avian reproduction and migration. Ibis 138: 47–63. Google Scholar

32.

J.T. Houghton , Y. Ding , D.J. Griggs , M. Noguer , P.J. van der Linden & D. Xiaosu (eds) 2001. Climate change 2001: The scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ. Press, Cambridge. Google Scholar

33.

L. Hughes 2000. Biological consequences of global warming: is the signal already apparent? TREE 15: 56–61. Google Scholar

34.

O. Hüppop & K. Hüppop 2003. North Atlantic Oscillation and timing of spring migration in birds. Proc. R. Soc. Lond. B, 270, 233–240. Google Scholar

35.

J.D. Jacobs & J.C. Wingfield 2000. Endocrine control of life-cycle stages: a constraint on response to the environment? Condor 102: 35–51. Google Scholar

36.

D. Jenkins & A. Watson 2000. Dates of first arrival and song of birds during 1974–99 in mid-Deeside, Scotland. Bird Study 47: 249–251. Google Scholar

37.

D. Lack 1968. Ecological adaptations for breeding in birds. Methuen, London. Google Scholar

38.

A. Lundberg & R.V. Alatalo 1992. The pied flycatcher. T & A.D. Poyser, London. Google Scholar

39.

C.F. Mason 1995. Long-term trends in the arrival dates of spring migrants. Bird Study 42: 182–189. Google Scholar

40.

R.H. McCleery & C.M. Perrins 1998. Temperature and egg-laying trends. Nature 391: 30–31. Google Scholar

41.

A.P. Møller 2001. Heritability of arrival date in a migratory bird. Proc. R. Soc. Lond., B 268: 203–206. Google Scholar

42.

D. Moritz 1993. Long-term monitoring of Palaearctic-African migrants at Helgoland/German bight, North Sea. Proc. Pan-Afr. Orn. Congr. 8: 579–586. Google Scholar

43.

G. Ottersen , B. Planque , A. Belgrano , E. Post , P.C. Reid , N.C. Stenseth 2001. Ecological effects of the North Atlantic oscillation. Oecologia 128: 1–14. Google Scholar

44.

C.M. Perrins 1970. The timing of birds' breeding seasons. Ibis 112: 242–255. Google Scholar

45.

J. Potti 1998. Arrival time from spring migration in male Pied Flycatchers: individual consistency and familial resemblance. Condor 100: 702–708. Google Scholar

46.

F. Pulido & P. Berthold 1998. The microevolution of migratory behaviour in the blackcap: effects of genetic covariances on evolutionary trajectories. In: F. Spina & A. Grattarola (eds) Proceedings of the 1st Meeting of the European Ornithologists' Union, Bologna. Biol. Conserv. Fauna 102: 206–211. Google Scholar

47.

F. Pulido , P. Berthold & A.J. van Noordwijk 1996. Frequency of migrants and migratory activity are genetically correlated in a bird population: evolutionary implications. Proc. Natl. Acad. Sci. USA 93: 14642–14647. Google Scholar

48.

F. Pulido , P. Berthold , G. Mohr & U. Querner U 2001. Heritability of the timing of autumn migration in a natural bird population. Proc. R. Soc. Lond., B. 268: 953–959. Google Scholar

49.

C.S. Robbins , J.R. Sauer , R. Greenberg & S. Droeger 1989. Population declines in North American birds that migrate to the neotropics. Proc. Natl. Acad. Sci. USA 86: 7658–7622. Google Scholar

50.

R. Sagarin 2001. False estimates of the advance of spring. Nature 414: 600. Google Scholar

51.

P. Siikamäki 1998. Limitation of reproductive success by food availability and breeding time in Pied Flycatchers. Ecology 79: 1789–1796. Google Scholar

52.

L.V. Sokolov & V.A. Payevsky 1998. Spring temperatures influence year-to-year variations in the breeding phenology of passerines on the Courish Spit, eastern Baltic. Avian Ecol. Behav. 1: 22–36. Google Scholar

53.

L.V. Sokolov , M.Y. Markovets , A.P. Shapoval & Y.G. Morozov 1998. Long-term trends in the timing of spring migration of passerines on the Courish Spit of the Baltic Sea. Avian Ecol. Behav. 1: 1–21. Google Scholar

54.

T.H. Sparks 1999. Phenology and the changing pattern of bird migration in Britain. Int. J. Biometeorol. 42: 134–138. Google Scholar

55.

W.J. Sutherland 1998. Evidence for flexibility and constraint in migration systems. J. Avian Biol. 29: 441–446. Google Scholar

56.

C.D. Thomas & J.J. Lennon 1999. Birds extend their ranges northwards. Nature 399: 213. Google Scholar

57.

P. Tryjanowski , S. Kuzniak & T.H. Sparks 2002. Earlier arrival of some farmland migrants in western Poland. Ibis 144: 62–68. Google Scholar

58.

A.J. Van Noordwijk , R.H. McCleery & C.M. Perrins 1995. Selection for timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64: 451–458. Google Scholar

59.

N. Verboven , J.M. Tinbergen , S. Verhulst 2001. Food, reproductive success and multiple breeding in the Great Tit Parus major. Ardea 89: 387–406. Google Scholar

60.

S. Verhuist , J.H. van Balen & J. M. Tinbergen 1995. Seasonal decline in reproductive success: variation in time or quality. Ecology 76: 2393–2403. Google Scholar

61.

M. Visser & M.M. Lambrechts 1999. Information constraints in the timing of reproduction in temperate zone birds: great and blue tits. Proc. Int. Orn. Congr. 22: 249–264. Google Scholar

62.

M.E. Visser & L.J.M. Holleman 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. R. Soc. Lond. B 268: 289–294. Google Scholar

63.

M.E. Visser , A.J. van Noordwijk , J.M. Tinbergen & C.M. Lessells 1998. Warmer springs lead to mistimed reproduction in Great Tits (Parus major). Proc. R. Soc. Lond. B 265: 1867–1870. Google Scholar

64.

C. Vogel & D. Moritz 1995. Langjährige Änderungen von Zugzeiten auf Helgoland. J. ber. Inst. Vogelforsch. 2: 8–9. Google Scholar

65.

M. Widmer 1999. Altitudinal variation of migratory traits in the Garden Warbler Sylvia borin. PhD-the-sis, University of Zurich, Zurich. Google Scholar

66.

W. Winkel & H. Hudde 1997. Long-term trends in reproductive traits of tits (Parus major, P. caeruleus) and Pied Flycatchers Ficedula hypoleuca. J. Avian Biol. 28: 187–190. Google Scholar
Timothy Coppack and Christiaan Both "Predicting Life-Cycle Adaptation of Migratory Birds to Global Climate Change," Ardea 55(1–2), 369-378, (1 December 2002). https://doi.org/10.5253/arde.v90i3.p369
Published: 1 December 2002
KEYWORDS
biological rhythms
climate change
Ficedula hypoleuca
migration
moult
photoperiod
reproduction
Back to Top