Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The effective management of species requires detailed knowledge of key population parameters. A capture–mark–recapture study of the squirrel glider (Petaurus norfolcensis) was conducted in an urban forest remnant in Brisbane, south-east Queensland. A total of 187 adult gliders (96 females, 91 males) was captured 620 times, in 19 sessions over a 4-year period. A Cormack–Jolly–Seber model was employed to estimate adult survival and abundance. Factors that may affect survival (e.g. sex, year, season) were included in population models. The overall probability of annual apparent survival was 0.49 ± 0.08. The capture probability over the duration of the study was 0.38 ± 0.03. The size of the local population was highest in the first year of the study (70–113 individuals) but then declined and generally remained low in the last two years. Apparent survival may include an unknown component of dispersal. However, our study area was mostly surrounded by a hostile urban matrix, so the effect of dispersal may have been minimal. Further studies that assess the survival of squirrel gliders are needed to assess the extent to which this parameter varies among localities.
The buff-footed antechinus (Antechinus mysticus) is a newly described carnivorous marsupial from eastern Australia. We examined the diet composition and prey preference of this little known dasyurid in the southernmost (Brisbane) and northernmost (Eungella) populations. Animals were captured over three months (July–September) during 2014 encompassing the breeding period (late July and August) of the species. Seasonal sampling carried over into a second year which followed the succeeding cohort of juveniles as they dispersed from their maternal nest (summer), through their maturation (autumn), to the beginning of breeding (winter), sampling across one complete generation. The diet of A. mysticus consisted predominantly of invertebrates, with 16 prey orders identified (11 Insecta, two Arachnida, two Myriapoda, one Crustacea). Vertebrate (Family Scincidae) consumption was recorded in low abundance at both sites. The diet of A. mysticus was dominated by Araneae (spiders), Blattodea (cockroaches) and Coleoptera (beetles). Comparison of identified prey consumption in scats with prey availability in pitfall traps showed A. mysticus to be a dietary generalist, opportunistically consuming mostly invertebrate prey with supplementary predation on small vertebrates. Juvenile A. mysticus preyed predominantly on Blattodea (33.4% mean percentage volume) and Coleoptera (31.6% mean percentage volume), potentially suggesting a preference for larger, easier to catch, prey items. Further exploration into the relationship between prey and body size is required to determine this.
The endangered grassland earless dragon, Tympanocryptis pinguicolla, is present in two geographic locations in Australia: the Australian Capital Territory and adjacent New South Wales (NSW) near Canberra (∼580 m above sea level) and Monaro Plains, NSW, near Cooma (∼950 m above sea level). The lizards live in native grassland, an endangered ecological community, and although the population ecology of the animal has been examined, the importance of habitat for thermoregulatory patterns is unknown. We studied whether lizards from the two locations differ in their seasonal patterns of thermoregulation by measuring skin and chest temperatures using both radio-telemetry and temperature measurement in the field, as well as thermal preferences in a laboratory thermal gradient. These results are compared with the operative temperatures (Te) in various microhabitats in the two regions to determine to what extent lizards are thermoregulating. We demonstrate that these lizards do not maintain a constant body temperature, but allow Tb to vary between 13 and 39°C when active in the field, although the grand mean for 50% basking temperatures ranged between 32 and 36°C in the laboratory gradient. Temperatures in the various microhabitats can exceed 40°C, but lizards appeared to avoid those temperatures by seeking shelter in either burrows or the base of grass tussocks. Lizards could choose microhabitats that would permit maintenance of body temperatures above 30°C in most seasons, but did not do so. As high body temperature is not selected in field conditions for either population, other processes (e.g. predation) may be more important for determining Tb maintenance.
Clive R. McMahon, Michele Thums, Miecha Bradshaw, Steven Busby, Vaughn Chapple, Melissa Evans, Stephen Goodlich, Clair Holland, Holly Raudino, Paul Rebuck, Mark A. Hindell
Southern elephant seals typically breed on subantarctic islands and breeding in more temperate regions is rare. This small female (∼1.42 m) that weaned after 25 days is smaller than the average weaned female elephant seal and her survival prospects are correspondingly low (20–35%). The fact that the elephant seal was successfully weaned offers some insight into the breeding plasticity in this species.
We present a database of indigenous and non-indigenous terrestrial mammal records on Western Australian (WA) islands, updated from a database we published more than 20 years ago. The database includes records of 88 indigenous species on 155 islands, compared with 54 indigenous species on 141 WA islands in the paper by Abbott and Burbidge in CALMScience, Volume 1, pp. 259–324. The database also provides 266 records of 21 species of non-indigenous mammal species on 138 WA islands, more than double the number of records in the earlier review. Of the 33 threatened and near-threatened WA non-volant mammals, 16 occur naturally (and have persisted) on WA islands, five additional species occur on islands outside WA, 14 successful conservation translocations of 10 species have been undertaken to WA islands, and six species have been successfully translocated to 12 islands outside WA – two of which do not currently occur on WA islands. The house mouse now accounts for the largest number of extant records of non-indigenous species. Even with the increasing number of conservation translocations to mainland islands (fenced exclosures), WA islands remain essential for the effective conservation of several threatened and near-threatened mammals and many of the translocations to mainland islands have been sourced from islands.
Reviews of nest predation call for the identification of nest predators. The identity of nest predators is perhaps most poorly known for ground-nesting birds. Marsupials are not generally regarded as potential nest-predators of these birds, partly because the biology of rare Australian marsupials is not fully understood due to their rarity. This study identified three marsupials – boodie (Bettongia lesueur), woylie (Bettongia penicillata) and brushtail possum (Trichosurus vulpecula) – taking eggs from artificial nests modelled on that of the threatened painted button-quail (Turnix varius). Approximately one-third of the eggs were taken by the two bettongs and another third by the brushtail possum. I present dietary evidence of bettongs consuming vertebrate items including taking live prey to provide external validation for the notion that they may depredate natural nests. I suggest that more research is required on the impacts of reintroductions to avoid deleterious effects on resident species.
We characterised 14 new polymorphic microsatellite loci for the endangered lizard Liopholis slateri. Initially, 454 shotgun sequencing was used to identify 46 loci, which were trialled for amplification. Subsequently, 14 of these loci were screened for variation in 21 individuals from scat-derived DNA samples collected from Owen Springs Reserve in central Australia. All 14 loci were polymorphic, with observed heterozygosity ranging from 0.19 to 0.86 and the number of alleles per locus ranging from 2 to 10. These loci will be useful in understanding the genetic variation and connectivity within and among extant L. slateri populations.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere