BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Although the Australasian grass genus Austrostipa is species rich, abundant and ecologically significant, the subgeneric classification of its 62 species has not been comprehensively tested with molecular data. We used three molecular markers from 51 species to determine a phylogeny of the genus and found strong support for the following seven of the existing subgenera: Falcatae, Austrostipa, Aulax, Lobatae, Bambusina, Lancea and Longiaristatae. The molecular data do not support Tuberculatae and Eremophilae, which could be combined with subgenus Austrostipa. The data are equivocal or insufficient regarding monophyly of Ceres, Arbuscula, Petaurista and Lanterna. Data from the nuclear internal transcribed spacer region appear to be suitable for phylogenetic analysis of this group, and the degree of sequence variability resolves species-level relationships with good levels of support. In contrast, chloroplast sequence data from the matK and rbcL genes do not resolve most relationships at the species level, and the inferred phylogeny hints at gene duplication, chloroplast capture, or deep coalescence in the evolutionary history of Austrostipa.
We used nuclear and chloroplast DNA markers to examine relationships and test the current morphology-based taxonomy of several species and subspecies of Australian and New Zealand Wahlenbergia. We sampled nuclear ribosomal ITS regions and the chloroplast regions trnL–F and trnK–psbA from 105 individuals, representing 29 of the 46 species and subspecies currently recognised in New Zealand and Australia. Our phylogeny was incompletely resolved because of low levels of genetic variation in all three markers and some conflict between ITS and chloroplast markers. The New Zealand rhizomatous species appear to have radiated in New Zealand after a single long-distance dispersal event from Australia, but it is unclear to which species in Australia they are most closely related. The New Zealand radicate species do not form a clade; instead they are shown to be very closely related to many Australian radicate species. The four species in the New Zealand lowland radicate W. gracilis complex may all belong to the same morphologically variable species. In contrast, the other New Zealand radicate species, W. vernicosa, is probably a separately evolving lineage, and is not conspecific with the W. gracilis complex, nor the Australian W. littoricola, as previously hypothesised. Two of the New Zealand rhizomatous species, W. albomarginata and W. pygmaea, may be conspecific. By contrast, the morphologically distinctive New Zealand rhizomatous W. cartilaginea, W. matthewsii and W. congesta subsp. haastii each formed monophyletic groups. Samples of two recently described Australian species (W. rupicola and W. telfordii) formed monophyletic groups consistent with their recognition.
Pichonia Pierre (Sapotaceae, Chrysophylloideae) is a small genus of 10 species in Australasia, of which seven are endemic to New Caledonia. We revise the genus for New Caledonia and describe one new species (P. grandiflora), resurrect another (P. dubia) and make two new combinations because of nomenclatural priority (P. balansae, P. deplanchei). P. balansae has been known for decades as P. calomeris, a name that in fact has never been validly published. The members are mainly found in Grande Terre, the main island of New Caledonia, but two species extend to Belep Islands in the north and to Isle of Pines in the south of the archipelago. Most grow in maquis vegetation at low altitudes, on ultramafic soils, preferably serpentinite. The exceptions are P. balansana, confined to limestone areas, and P. dubia that is a large canopy tree of the humid forest on ultramafic soil. Pichonia is distinguished by a character combination of an areolate higher venation, staminodes, a single-seeded fruit, plano-convex cotyledons and absence of endosperm. Because of being restricted to ultramafic soils, they are subsequently sensitive to present and future mining activities in New Caledonia. Hence, preliminary IUCN Red List assessments for all members are provided. P. balansana, P. daenikeri and P. lecomtei are all naturally uncommon, do not occur in any protected area and are proposed the IUCN status of Vulnerable. The herein described species P. grandiflora is rare in nature, known only from the Boulinda–Paéoua–Kopéto Mountains, and is in urgent need of protection. It is therefore assigned a preliminary status of Endangered.
A phenetic study of morphological characters of the Drosera peltata complex (Droseraceae) supports the recognition of the following taxa: D. peltata from wetlands of south-eastern Australia; D. auriculata from south-eastern Australia and New Zealand; the morphologically variable D. hookeri from south-eastern Australia and northern New Zealand; the widespread D. lunata from southern and South-East Asia, as well as northern and north-eastern Australia; and the new species D. yilgarnensis R.P.Gibson & B.J.Conn is here described, from around granite outcrops of south-western Australia. D. bicolor from south-western Australia is recognised as a distinct species outside of the D. peltata complex. D. insolita, considered until recently as a distinct species, is reduced to synonymy of D. lunata. Phenotypic plasticity, vegetative similarity and fleetingly produced diagnostic floral and seed characters within the complex pose significant challenges in understanding the taxonomy of these taxa.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere