Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
At least seven foliar taxa of Proteaceae occur in Oligo–Miocene lignite from the Newvale site. These taxa include two new species of the fossil genus Euproteaciphyllum, and previously described species of tribe Persoonieae and Banksia. Other specimens from Newvale are not assigned to new species, but some conform to leaves of the New Caledonian genus Beauprea, which is also represented in the lignite by common pollen. Two other Euproteaciphyllum species are described from the early Miocene Foulden Maar diatomite site. One of these species may belong to Alloxylon (tribe Embothrieae) and the other to tribe Macadamieae, subtribe Gevuininae. Ecologically, the species from Newvale represented important components of wet, oligotrophic, open vegetation containing scleromorphic angiosperms and very diverse conifers. In contrast, Proteaceae were large-leaved and rare in Lauraceae-dominated rainforest at the volcanic Foulden Maar site. Overall, the Oligo–Miocene fossils confirm that Proteaceae was formerly much more diverse and dominant in the New Zealand vegetation, and provide fossil evidence for biome conservatism in both leaf traits and lineage representation.
Acacia sensu stricto is found predominantly in Australia; however, there are 18 phyllodinous taxa that occur naturally outside Australia, north from New Guinea to Indonesia, Taiwan, the Philippines, south-western Pacific (New Caledonia to Samoa), northern Pacific (Hawaii) and Indian Ocean (Mascarene Islands). Our aim was to determine the phylogenetic position of these species within Acacia, to infer their biogeographic history. To an existing molecular dataset of 109 taxa of Acacia, we added 51 new accessions sequenced for the ITS and ETS regions of nuclear rDNA, including samples from 15 extra-Australian taxa. Data were analysed using both maximum parsimony and Bayesian methods. The phylogenetic positions of the extra-Australian taxa sampled revealed four geographic connections. Connection A, i.e. northern Australia–South-east Asia–south-western Pacific, is shown by an early diverging clade in section Plurinerves, which relates A. confusa from Taiwan and the Philippines (possibly Fiji) to A. simplex from Fiji and Samoa. That clade is related to A. simsii from southern New Guinea and northern Australia and other northern Australian species. Two related clades in section Juliflorae show a repeated connection (B), i.e. northern Australia–southern New Guinea–south-western Pacific. One of these is the ‘A. auriculiformis clade’, which includes A. spirorbis subsp. spirorbis from New Caledonia and the Loyalty Islands as sister to the Queensland species A. auriculiformis; related taxa include A. mangium, A. leptocarpa and A. spirorbis subsp. solandri. The ‘A. aulacocarpa clade’ includes A. aulacocarpa, A. peregrinalis endemic to New Guinea, A. crassicarpa from New Guinea and Australia, and other Australian species. Acacia spirorbis (syn. A. solandri subsp. kajewskii) from Vanuatu (Melanesia) is related to these two clades but its exact position is equivocal. The third biogeographic connection (C) is Australia–Timor–Flores, represented independently by the widespread taxon A. oraria (section Plurinerves) found on Flores and Timor and in north-eastern Queensland, and the Wetar island endemic A. wetarensis (Juliflorae). The fourth biogeographic connection (D), i.e. Hawaii–Mascarene–eastern Australia, reveals an extreme disjunct distribution, consisting of the Hawaiian koa (A. koa, A. koaia and A. kaoaiensis), sister to the Mascarene (Réunion Island) species A. heterophylla; this clade is sister to the eastern Australian A. melanoxylon and A. implexa (all section Plurinerves), and sequence divergence between taxa is very low. Historical range expansion of acacias is inferred to have occurred several times from an Australian–southern New Guinean source. Dispersal would have been possible as the Australian land mass approached South-east Asia, and during times when sea levels were low, from the Late Miocene or Early Pliocene. The close genetic relationship of species separated by vast distances, from the Indian Ocean to the Pacific, is best explained by dispersal by Austronesians, early Homo sapiens migrants from Asia.
Backhousieae is a small tribe of Myrtaceae composed of two genera (Backhousia and Choricarpia) endemic to Australia. Phylogenetic analyses (parsimony, maximum likelihood and Bayesian) were performed on a combined chloroplast (matK, trnH–psbA, trnC–psbM, trnL–F, rps16) and nuclear (internal transcribed spacers) dataset for all nine species of Backhousia, two species of Choricarpia and two undescribed species. Backhousieae is monophyletic; however, Choricarpia is embedded within Backhousia. In all analyses there were four strongly supported clades containing two to four taxa, with no support for relationships among clades, and the relationships of B. bancroftii and B. citriodora remain unresolved. Bayesian relaxed-clock molecular dating indicated that the Backhousieae has been potentially present in rainforest across Australia for more than 50 million years. The current distribution of Backhousia is inferred to be largely due to the contraction of Australian rainforest in the Neogene. New combinations in Backhousia are made for the two species of Choricarpia, and B. gundarara and B. tetraptera are described as new species. B. gundarara is known only from the Kimberley region of Western Australia, widely disjunct from the remaining Backhousia in eastern Queensland and New South Wales, and appears to be a lineage isolated by increasing aridity during the Miocene.
Harrya is described as a new genus of Boletaceae to accommodate Boletus chromapes, a pink-capped bolete with a finely scabrous stipe adorned with pink scabers, a chrome yellow base and a reddish-brown spore deposit. Phylogenetic analyses of large-subunit rDNA and translation elongation factor 1α confirmed Harrya as a unique generic lineage with two species, one of which is newly described (H. atriceps). Some Chinese taxa were recently placed in a separate genus, Zangia, supported by both morphology and molecular data. Multiple accessions from Queensland, Australia, support the synonymy of at least three species in a separate Australian clade in the new genus, Australopilus. The truffle-like Royoungia is also supported as a separate lineage in this clade of boletes. Even though it lacks stipe characters, it possesses the deep, bright yellow to orange pigments in the peridium. Additional collections from Zambia and Thailand represent independent lineages of uncertain phylogenetic placement in the Chromapes complex, but sampling is insufficient for formal description of new species. Specimens from Java referable to Tylopilus pernanus appear to be a sister group of the Harrya lineage.
Molecular genetic analyses were used to reconstruct phylogenetic relationships and estimate divergence times for Raukaua species and their close relatives. A monophyletic group identified as the ‘greater Raukaua clade’ was circumscribed, with eight representative species; its basal divergence was estimated at c. 70 Mya, possibly after Zealandia had separated from Gondwana. Raukaua is paraphyletic because of the placement of Motherwellia, Cephalaralia, Cheirodendron and Schefflera s.s. The phylogeny supports a more narrowly circumscribed Raukaua that includes the New Zealand but not the South American or Tasmanian representatives. Ancestors of the monophyletic South American and Tasmanian Raukaua and the mainland Australian Motherwellia and Cephalaralia diverged at c. 66 Mya and their current disjunction may be vicariant, with overland dispersal between Australia and South America, possibly via Antarctica. Vicariance is also a likely mechanism for divergence at c. 57 Mya of the monophyletic Motherwellia, Cephalaralia and Tasmanian Raukaua. The common ancestor of New Zealand Raukaua¸ Cheirodendron and Schefflera s.s. is inferred to have existed c. 62 Mya in New Zealand, before the marine incursions during the Oligocene, implying that New Zealand Raukaua and Schefflera s.s. survived the inundation period or speciated outside New Zealand and subsequently colonised. Ancestors of Cheirodendron split from New Zealand Raukaua c. 43 Mya and dispersed over vast expanses of the south-western Pacific to Hawaii.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere