BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Eremophila R.Br. comprises at least 238 species endemic to Australia, with many more having not yet been formally described. Three putative new taxa, namely, E. sp. Hamersley Range (K. Walker KW 136), E. sp. Calvert Range (A. A. Burbidge 738) and E. sp. Rudall River (P. G. Wilson 10512), were segregated from a broadly defined E. tietkensii F.Muell. & Tate by J. Hurter at the Western Australian Herbarium in 2012. Both E. sp. Hamersley Range and E. sp. Rudall River are listed as being of conservation concern in Western Australia, the former occurring in the Pilbara region in areas of prospective interest for mining development. We sought to determine whether these phrase-named entities should be formally described as new species, using multivariate analyses of morphometric and molecular data derived from specimens in the Western Australia Herbarium. Eremophila sp. Rudall River could not be adequately separated from E. tietkensii by either morphological or molecular data, and is here included within that species. By contrast, E. sp. Hamersley Range and E. sp. Calvert Range are clearly morphologically and genetically distinct. We thus describe them here as the new species E. naaykensii A.L.Curtis & K.R.Thiele and E. hurteri A.L.Curtis & K.R.Thiele. The recognition of these taxa will help inform their conservation prioritisation and subsequent management.
A new genus, Simonachne E.J.Thomps. is described and Ancistrachne maidenii (A.A.Ham.) Vickery is transferred to it as Simonachne maidenii (A.A.Ham.) E.J.Thomps. The new subtribe Cleistochloinae E.J.Thomps. is described and is composed of four genera, Calyptochloa, Cleistochloa, Dimorphochloa and Simonachne, united by distinctive morphology that is associated with reproductive dimorphism. Phenetic analyses were used to examine the similarities of taxa and to test the consistency of results with variation in analysis inputs. Input variations included the dataset in terms of composition of the samples and morphological characters, and the cluster analysis algorithms, viz. classification, ordination and association measure. A baseline dataset was used for comparison of results and comprised 24 samples and 161 characters relating to anatomy, micro- and macromorphology of spikelets, leaves and fertile culms. Three major clusters were resolved, Cleistochloinae (‘the cleistogamy group‚), Neurachninae in its original sense, and a cluster referred to as the ‘paniculate inflorescence group‚ composed of Ancistrachne s.s., Entolasia and Panicum s.s. The results were congruent with a recent phylogenetic study that showed that Ancistrachne s.l., Cleistochloa s.l. and Dimorphochloa s.l. were not monophyletic. The process provided an array of morphological characters for descriptions of species and for distinguishing taxa at multiple ranks in natural groups, components of alpha and beta taxonomy respectively.
A taxonomic revision of the southern hemisphere pygmy forget-me-not group (Myosotis L.; Boraginaceae) is presented here. Climate-edaphic niches are modelled and compared for five species in the pygmy group, namely, M. antarctica Hook.f., M. brevis de Lange & Barkla, M. drucei (L.B.Moore) de Lange & Barkla, M. pygmaea Colenso and M. glauca (G.Simpson & J.S.Thomson) de Lange & Barkla, and one unnamed putative taxon, M. “Volcanic Plateau”. In this case, niche-modelling data mostly do not aid species delimitation, but morphological and genetic data provide evidence for recognising the following three species within the group: M. brevis and M. glauca (both endemic to New Zealand), and an enlarged M. antarctica (native to New Zealand, Campbell Island and Chile). Myosotis antarctica is here circumscribed to include M. antarctica sens. strict., M. drucei and M. pygmaea. The following two allopatric subspecies of M. antarctica are recognised on the basis of minor morphological differences: subsp. antarctica (formerly M. antarctica from Campbell Island and Chile, M. drucei and M. “Volcanic Plateau”) and subsp. traillii Kirk (formerly known by New Zealand botanists as M. pygmaea Colenso, an illegitimate name). For all three species, which are considered Threatened or At Risk, most of their genetic variation is partitioned between rather than within populations, meaning that conserving as many populations as possible should be the priority to minimise risk of extinction.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere