Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Hemoglobin (Hb) is commonly known for its capacity to bind and transport oxygen and carbon dioxide in erythroid cells. However, it plays additional roles in cellular function and health due to its capacity to bind other gases including nitric oxide. Further, Hb acts as a potent antioxidant, quenching reactive oxygen species. Despite its potential roles in cellular function, the preponderance of Hb research remains focused on its role in oxygen regulation. There is increasing evidence that Hb expression is more ubiquitous than previously thought, with Hb and its variants found in a myriad of cell types ranging from macrophages to spermatozoa. The majority of nonerythroid cell types that express Hb are situated within hypoxic environments, suggesting Hb may play a role in hypoxia-inducible factor-regulated gene expression by controlling the level of oxygen available or as an adaptation to low oxygen providing a mechanism to store oxygen. Oocyte maturation and preimplantation embryo development occur within the low oxygen environments of the antral follicle and oviduct/uterus, respectively. Interestingly, Hb was recently found in human cumulus and granulosa cells and murine cumulus–oocyte complexes and preimplantation embryos. Here, we consolidate and analyze the research generated todate on Hb expression in nonerythroid cells with a particular focus on reproductive cell types. We outline future directions of this research to elucidate the role of Hb during oocyte maturation and preimplantation embryo development and finally, we explore the potential clinical applications and benefits of Hb supplementation during the in vitro culture of gametes and embryos.
Summary Sentence
Hemoglobin plays an important role in gas transport and as an antioxidant. While its function in erythroid cells is well characterized, it has recently been found in nonerythroid cells including reproductive cell types where it is thought to have similar functions.
Preeclampsia (PE) is a common pregnancy complication affecting 3–5% of women. Preeclampsia is diagnosed clinically as new-onset hypertension with associated end organ damage after 20 weeks of gestation. Despite being diagnosed as a maternal syndrome, fetal experience of PE is a developmental insult with lifelong cognitive consequences. These cognitive alterations are associated with distorted neuroanatomy and cerebrovasculature, including a higher risk of stroke. The pathophysiology of a PE pregnancy is complex, with many factors potentially able to affect fetal development. Deficient pro-angiogenic factor expression is one aspect that may impair fetal vascularization, alter brain structure, and affect future cognition. Of the pro-angiogenic growth factors, placental growth factor (PGF) is strongly linked to PE. Concentrations of PGF are inappropriately low in maternal blood both before and during a PE gestation. Fetal concentrations of PGF appear to mirror maternal circulating concentrations. Using Pgf-/- mice that may model effects of PE on offspring, we demonstrated altered central nervous system vascularization, neuroanatomy, and behavior. Overall, we propose that development of the fetal brain is impaired in PE, making the offspring of preeclamptic pregnancies a unique cohort with greater risk of altered cognition and cerebrovasculature. These individuals may benefit from early interventions, either pharmacological or environmental. The early neonatal period may be a promising window for intervention while the developing brain retains plasticity.
Summary Sentence
Offspring of preeclamptic pregnancies have unique brains with evidence from an angiokinedeficient mouse model suggesting a role for PGF.
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Summary Sentence
NOD-like receptros in reproduction and embryonic development.
Pregnancy loss is common during the peri-implantation period in mammals when glucose is required for both embryonic development and decidualization of the endometrium. As the uterus cannot synthesize glucose, all glucose must come directly from maternal circulation as needed or transiently stored as the macromolecule glycogen. Glycogen acts as a glucose reservoir, storing up to 55 000 glucose moieties per molecule. Endometrial glycogen concentrations are correlated with fertility in humans, indicating that glycogen is an essential source of glucose during early pregnancy. In humans and primates, endometrial glycogen concentrations peak during the luteal phase due to progesterone. In contrast, in rats and mink, estradiol triggers an accumulation of uterine glycogen during proestrus and estrus. In mated rats, the glycogen content of the endometrium increases again after implantation due to high levels of glycogen stored in the decidua. In mink, endometrial glycogen reserves are localized in the uterine epithelia at estrus. These reserves are mobilized before implantation, suggesting they are used to support embryonic growth. Uterine glycogen concentrations continue to decrease after implantation in mink, probably due to a lack of decidualization. How ovarian steroids stimulate glycogenesis in the endometrium is unclear, but current evidence suggests that estradiol/progesterone interacts with insulin or insulin-like growth factor signaling. In summary, endometrial glycogen is an essential source of glucose during the peri-implantation period. More work is needed to characterize differences among species, elucidate the fate of the glucose liberated from glycogen, and understand how ovarian steroids regulate glycogen metabolism in the uterus.
Summary Sentence
Glycogen in the uterus and oviducts represents an important source of glucose to support the uterus and embryos early pregnancy.
Manjunatha K. Nanjappa, Ana M. Mesa, Theresa I. Medrano, Wendy N. Jefferson, Francesco J. DeMayo, Carmen J. Williams, John P. Lydon, Ellis R. Levin, Paul S. Cooke
Enhancer of zeste homolog 2 (EZH2) is a rate-limiting catalytic subunit of a histone methyltransferase, polycomb repressive complex, which silences gene activity through the repressive histone mark H3K27me3. EZH2 is critical for epigenetic effects of early estrogen treatment, and may be involved in uterine development and pathologies. We investigated EZH2 expression, regulation, and its role in uterine development/function. Uterine epithelial EZH2 expression was associated with proliferation and was high neonatally then declined by weaning. Pre-weaning uterine EZH2 expression was comparable in wild-type and estrogen receptor 1 knockout mice, showing neonatal EZH2 expression is ESR1 independent. Epithelial EZH2 was upregulated by 17β-estradiol (E2) and inhibited by progesterone in adult uteri from ovariectomized mice. To investigate the uterine role of EZH2, we developed a EZH2 conditional knockout (Ezh2cKO) mouse using a cre recombinase driven by the progesterone receptor (Pgr) promoter that produced Ezh2cKO mice lacking EZH2 in Pgr-expressing tissues (e.g. uterus, mammary glands). In Ezh2cKO uteri, EZH2 was deleted neonatally. These uteri had reduced H3K27me3, were larger than WT, and showed adult cystic endometrial hyperplasia. Ovary-independent uterine epithelial proliferation and increased numbers of highly proliferative uterine glands were seen in adult Ezh2cKO mice. Female Ezh2cKO mice were initially subfertile, and then became infertile by 9 months. Mammary gland development in Ezh2cKO mice was inhibited. In summary, uterine EZH2 expression is developmentally and hormonally regulated, and its loss causes aberrant uterine epithelial proliferation, uterine hypertrophy, and cystic endometrial hyperplasia, indicating a critical role in uterine development and function.
Summary Sentence
Loss of the histone methyltransferase EZH2 in the mouse uterus results in changes in uterine development and ovary-independent epithelial proliferation and ultimately causes infertility.
Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance, and parturition; thus, identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl– channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found that myometrial cells from TMEM16ASMKO mice generated the same pattern and magnitude in Ca2+ signals upon stimulation with KCl, oxytocin, and PGF2α compared to the isogenic control myometrial cells. At the uterine tissue level, TMEM16A deletion also did not cause detectable changes in either spontaneous or agonist (i.e. KCl, oxytocin, and PGF2α)-induced contractions. Moreover, in vivo the TMEM16ASMKO mice gave birth at full term with the same litter size as genetically identical control mice. Finally, TMEM16A immunostaining in both control and TMEM16ASMKO mice revealed that this protein was highly expressed in the endometrial stroma, but did not co-localize with a smooth muscle specific marker MYH11. Collectively, these results unequivocally demonstrate that TMEM16A does not serve as a pacemaking channel for spontaneous uterine contraction, neither does it function as a depolarizing channel for agonist-evoked uterine contraction. Yet these two functions could underlie the normal gestation length and litter size in the TMEM16ASMKO mice.
Summary Sentence
The TMEM16A is absent in myometrial cells and exerts no impact on Ca2+ signaling, contractile responses and pregnancy in mice.
Conceptus elongation is a fundamental developmental event coinciding with a period of significant pregnancy loss in cattle. The process has yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by systemic progesterone. To better understand the environment facilitating this critical reproductive phenomenon, we interrogated the biochemical composition of uterine luminal fluid from heifers with high vs physiological circulating progesterone on days 12–14 of the estrous cycle—the window of conceptus elongation-initiation—by high-throughput untargeted ultrahigh-performance liquid chromatography tandem mass spectroscopy. A total of 233 biochemicals were identified, clustering within 8 superpathways [amino acids (33.9%), lipids (32.2%), carbohydrates (8.6%), nucleotides (8.2%), xenobiotics (6.4%), cofactors and vitamins (5.2%), energy substrates (4.7%), and peptides (0.9%)] and spanning 66 metabolic subpathways. Lipids dominated total progesterone (39.1%) and day (57.1%) effects; however, amino acids (48.5%) and nucleotides (14.8%) accounted for most day by progesterone interactions. Corresponding pathways over-represented in response to day and progesterone include (i) methionine, cysteine, s-adenosylmethionine, and taurine (9.3%); (ii) phospholipid (7.4%); and (iii) (hypo)xanthine and inosine purine metabolism (5.6%). Moreover, under physiological conditions, the uterine lumen undergoes a metabolic shift after day 12, and progesterone supplementation increases total uterine luminal biochemical abundance at a linear rate of 0.41-fold day–1–resulting in a difference (P ≤ 0.0001) by day 14. This global metabolic analysis of uterine fluid during the initiation of conceptus elongation offers new insights into the biochemistry of maternal–embryo communication, with implications for improving ruminant fertility.
Summary Sentence
High systemic progesterone alters bovine uterine luminal fluid biochemistry during the conceptus elongation-initiation window.
Mammalian oocytes are stored in the ovary for prolonged periods, and arrested in meiotic prophase. During this period, their plasma membranes are constantly being recycled by endocytosis and exocytosis. However, the function of this membrane turnover is unknown. Here, we investigated the requirement for exocytosis in the maintenance of meiotic arrest. Using Trim-away, a newly developed method for rapidly and specifically depleting proteins in oocytes, we have identified the SNARE protein, SNAP23, to be required for meiotic arrest. Degradation of SNAP23 causes premature meiotic resumption in follicle-enclosed oocytes. The reduction in SNAP23 is associated with loss of gap junction communication between the oocyte and surrounding follicle cells. Reduction of SNAP23 protein also inhibits regulated exocytosis in response to a Ca2+ stimulus (cortical granule exocytosis), as measured by lectin staining and cleavage of ZP2. Our results show an essential role for SNAP23 in two key processes that occur in mouse oocytes and eggs.
Summary Sentence
The SNARE protein, SNAP23, is required to maintain gap junction communication between the oocyte and follicle cells that is needed to maintain oocyte meiotic arrest, as well as for cortical granule exocytosis at fertilization.
A major challenge in medical genetics is to characterize variants of unknown significance (VUS). Doing so would help delineate underlying causes of disease and the design of customized treatments. Infertility has presented an especially difficult challenge with respect to not only determining if a given patient has a genetic basis, but also to identify the causative genetic factor(s). Though genome sequencing can identify candidate variants, in silico predictions of causation are not always sufficiently reliable so as to be actionable. Thus, experimental validation is crucial. Here, we describe the phenotype of mice containing a non-synonymous (proline-to-threonine at position 306) change in Spo11, corresponding to human SNP rs185545661. SPO11 is a topoisomerase-like protein that is essential for meiosis because it induces DNA double stranded breaks (DSBs) that stimulate pairing and recombination of homologous chromosomes. Although both male and female Spo11P306T/P306T mice were fertile, they had reduced sperm and oocytes, respectively. Spermatocyte chromosomes exhibited synapsis defects (especially between the X and Y chromosomes), elevated apoptotic cells, persistent markers of DSBs, and most importantly, fewer Type 1 crossovers that causes some chromosomes to have none. Spo11P306T/- mice were sterile and made fewer meiotic DSBs than Spo11+/- animals, suggesting that the Spo11P306T allele is a hypomorph and likely is delayed in making sufficient DSBs in a timely fashion. If the consequences are recapitulated in humans, it would predict phenotypes of premature ovarian failure, reduced sperm counts, and possible increased number of aneuploid gametes. These results emphasize the importance of deep phenotyping in order to accurately assess the impact of VUSs in reproduction genes.
Summary Sentence
Modeling of a rare SPO11 allele in mice demonstrates it causes defects that could impact fertility of affected people and their children.
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis in male due to their capability to multiply in numbers by self-renewal and subsequent meiotic processes. However, as SSCs are present in a very small proportion in the testis, in vitro proliferation of undifferentiated SSCs will facilitate the study of germ cell biology. In this study, we investigated the effectiveness of various cell lines as a feeder layer for rat SSCs. Germ cells enriched for SSCs were cultured on feeder layers including SIM mouse embryo-derived thioguanine and ouabain-resistant cells, C166 cells, and mouse and rat testicular endothelial cells (TECs) and their stem cell potential for generating donor-derived colonies and offspring was assessed by transplantation into recipient testes. Rat germ cells cultured on TECs showed increased mRNA and protein levels of undifferentiated spermatogonial markers. Rat SSCs derived from these germ cells underwent spermatogenesis and generated offspring when transplanted into recipients. Collectively, TECs can serve as an effective feeder layer that enhances the proliferative and self-renewal capacity of cultured rat SSCs while preserving their stemness properties.
Summary Sentence
TECs are effective as feeder cells for maintaining the stemness of spermatogonial stem cells that can undergo spermatogenesis and generate offspring.
The postacrosomal sheath (PAS) of the perinuclear theca (PT) is the first compartment of the sperm head to solubilize into the ooplasm upon sperm-oocyte fusion, implicating its constituents in zygotic development. This study investigates the role of one such constituent, glutathione-S-transferase omega 2 (GSTO2), an oxidative-reductive enzyme found in the PAS and perforatorial regions of the PT. GSTO2 uses the conjugation of reduced glutathione, an electron donor shown to be compulsory in sperm disassembly within the ooplasm. The proximity of GSTO2 to the condensed sperm nucleus led us to hypothesize that this enzyme may facilitate nuclear decondensation by reducing disulfide bonds before the recruitment of GSTO enzymes from within the ooplasm. To test this hypothesis, we utilized a cell permeable isozyme-specific inhibitor, which fluoresces when bound to the active site of GSTO2, to functionally inhibit spermatozoa before performing intracytoplasmic sperm injections (ICSI) in mice. The technique allowed for targeted inhibition of solely PT-residing GSTO2, as all that is required for complete zygotic development is the injection of the mouse spermatozoon head. ICSI showed that inhibition of PT-anchored GSTO2 caused a delay in sperm nuclear decondensation, and further resulted in untimely embryo cleavage, and an increase in fragmentation beginning at the morula stage. The confounding effects of these developmental delays ultimately resulted in decreased blastocyst formation. This study implicates PT-anchored GSTO2 as an important facilitator of nuclear decondensation and reinforces the notion that the PAS-PT is a critical sperm compartment harboring molecules that facilitate zygotic development.
Summary Sentence
Sperm head anchored GSTO2 and oocyte contained GSTO enzymes are key facilitators of sperm head decompartmentalization and male nuclear decondensation during mammalian zygotic development.
Androgens mediate a number of processes in mammalian and teleost ovaries in a follicle-stage dependent manner, including follicle growth, survival, and apoptosis. We recently reported that the membrane androgen receptor ZIP9 mediates apoptosis in Atlantic croaker granulosa/theca (G/T) cells from mature ovarian follicles, but the effects of androgens on early stage G/T cells in this model remains unknown. Here we show that testosterone mediates pro- and anti-apoptotic responses in a follicle stage-dependent manner in croaker ovarian follicle cells. Testosterone treatment decreased the incidence of apoptosis in G/T cells from early stage follicles (diameter <300 µm) but increased apoptosis in G/T cells from late stage follicles (diameter >400 µm). Small interfering RNA targeting ZIP9, but not the nuclear androgen receptor, blocked the anti-apoptotic response, indicating ZIP9 mediates anti-apoptotic in addition to pro-apoptotic responses. Testosterone treatment of early stage G/T cells resulted in opposite signaling outcomes from those previously characterized for the ZIP9-mediated apoptotic response including decreased cAMP and intracellular free zinc levels, and downregulation of pro-apoptotic member mRNA expression. While ZIP9-mediated apoptosis involves activation of a stimulatory G protein (Gs), activators of Gs signaling antagonized the anti-apoptotic response. Proximity ligation and G protein activation assays indicated that in G/T cells from early stage follicles ZIP9 is in close proximity and activates an inhibitory G protein, while in G/T cells from late stage follicles ZIP9 is in close proximity and activates Gs. This study demonstrates that ZIP9 mediates opposite survival responses of croaker G/T cells by activating different G proteins in a follicle stage-dependent manner.
Summary Sentence
The membrane androgen receptor ZIP9 mediates pro- and anti-apoptotic responses in teleost ovarian follicle cells by activating stimulatory and inhibitory G proteins, respectively, in a follicle stage-dependent manner
Manjunatha K. Nanjappa, Theresa I. Medrano, Ana M. Mesa, Madison T. Ortega, Paul D. Caldo, Jiude Mao, Jessica A. Kinkade, Ellis R. Levin, Cheryl S. Rosenfeld, Paul S. Cooke
Both membrane and nuclear fractions of estrogen receptor 1 (ESR1) mediate 17β-estradiol (E2) actions. Mice expressing nuclear (n)ESR1 but lacking membrane (m)ESR1 (nuclear-only estrogen receptor 1 [NOER] mice) show reduced E2 responsivity and reproductive abnormalities culminating in adult male and female infertility. Using this model, we investigated whether reproductive pathologies caused by the synthetic estrogen diethylstilbestrol (DES) are mitigated by mESR1 ablation. Homozygous and heterozygous wild-type (WT and HET, respectively) and NOER male and female mice were subcutaneously injected with DES (1 mg/kg body weight [BW]) or vehicle daily from postnatal day (PND) 1–5. Uterine histology was assessed in select DES-treated females at PND 5, whereas others were ovariectomized at PND 60 and treated with E2 (10 µg/kg BW) or vehicle 2 weeks later. Neonatal DES exposure resulted in ovary-independent epithelial proliferation in the vagina and uterus of WT but not NOER females. Neonatal DES treatment also induced ovary-independent adult expression of classical E2-induced transcripts (e.g., lactoferrin [Ltf] and enhancer of zeste homolog 2 [Ezh2]) in WT but not NOER mice. At PND 90, DES-treated WT and HET males showed smaller testes and a high incidence of bacterial pyogranulomatous inflammation encompassing the testes, epididymis and occasionally the ductus deferens with spread to lumbar lymph nodes; such changes were largely absent in NOER males. Results indicate that male and female NOER mice are protected from deleterious effects of neonatal DES, and thus mESR1 signaling is required for adult manifestation of DES-induced reproductive pathologies in both sexes.
Summary Sentence
Current results reveal that male and female NOER mice are protected from harmful effects of DES, providing strong evidence that membrane ESR1 signaling is required for adult manifestation of DES-induced reproductive pathologies in both sexes.
Kisspeptin (encoded by the Kiss-1 gene) in the arcuate nucleus (ARC) of the hypothalamus governs the hypothalamic-pituitary-gonadal (HPG) axis by regulating pulsatile release of gonadotropin-releasing hormone (GnRH). Meanwhile, kisspeptin in the anteroventral periventricular nucleus (AVPV) region has been implicated in estradiol (E2)-induced GnRH surges. Kiss-1–expressing cell model mHypoA-55 exhibits characteristics of Kiss-1 neurons in the ARC region. On the other hand, Kiss-1 expressing mHypoA-50 cells originate from the AVPV region. In the mHypoA-55 ARC cells, activin significantly increased Kiss-1 gene expression. Follistatin alone reduced Kiss-1 expression within these cells. Interestingly, activin-induced Kiss-1 gene expression was completely abolished by follistatin. Inhibin A, but not inhibin B reduced Kiss-1 expression. Activin-increased Kiss-1 expression was also abolished by inhibin A. Pretreatment of the cells with follistatin or inhibin A significantly inhibited kisspeptin- or GnRH-induced Kiss-1 gene expression in mHypoA-55 cells. In contrast, in the mHypoA-50 AVPV cell model, activin, follistatin, and inhibin A did not modulate Kiss-1 gene expression. The subunits that compose activin and inhibin, as well as follistatin were expressed in both mHypoA-55 and mHypoA-50 cells. Expression of inhibin βA and βB subunits and follistatin was much higher in mHypoA-55 ARC cells. Furthermore, we found that expression of the inhibin α subunit and follistatin genes was modulated in the presence of E2 in mHypoA-55 ARC cells. The results of this study suggest that activin, follistatin, and inhibin A within the ARC region participate in the regulation of the HPG axis under the influence of E2.
Summary Sentence
Activin, follistatin and inhibin directly regulate the expression of Kiss-1 gene in hypothalamic Kiss-1 expressing cell models.
Long noncoding RNAs (lncRNAs) are important regulators that have multiple functions in a variety of biological processes. However, the contributions of lncRNAs to follicle-stimulating hormone (FSH) secretion remain largely unknown. In this study, we first identified a novel lncRNA, lncRNAm433s1, as an intergenic lncRNA located in the cytoplasm. We next used MS2-RIP assays to demonstrate that lncRNA-m433s1 interacted with miR-433. Furthermore, we detected the levels of lncRNA-m433s1, miR-433, and Fshβ expression, FSH concentrations, and apoptosis upon overexpression and knockdown of lncRNA-m433s1, revealing that lncRNA-m433s1 upregulated Fshβ expression. Globally, lncRNA-m433s1 reduced the inhibitory effect of miR-433 on Fshβ and further regulated FSH secretion as a competing endogenous RNA (ceRNA) by sponging miR-433. This ceRNA model will provide novel insight into the regulatory mechanisms of lncRNAs associated with rat reproduction.
Summary Sentence
A regulatory mechanism of lncRNA in rat anterior pituitary cell which was that lncRNA-m433s1 reduced the inhibitory effect of miR-433 on Fshβ and further regulated FSH secretion by acting as a ceRNA to sponge miR-433.
Ovarian hyperstimulation syndrome (OHSS) is a serious iatrogenic complication in women undergoing induction of ovulation with human chorionic gonadotropin (hCG) for assisted reproductive techniques. Amphiregulin (AREG) is the most abundant epidermal growth factor receptor (EGFR) ligand expressed in human granulosa cells and follicular fluid and can be upregulated by luteinizing hormone (LH)/hCG. However, whether the expression levels of AREG, EGFR, and HER2 change in the granulosa cells of OHSS patients remains unknown. If it does, whether these molecules are involved in the development of OHSS requires investigation. In the present study, we showed that AREG, EGFR, and HER2 transcripts in granulosa cells as well as follicular fluid AREG proteins were elevated in OHSS patients. Increased AREG levels were associated with transcript levels and follicular content of vascular endothelial growth factor (VEGF), the marker for OHSS pathology. Treatment of cultured granulosa cells with AREG stimulated VEGF expression and secretion, with granulosa cells from OHSS patients showing more rapid and pronounced increases than the non-OHSS group. In addition, siRNA-mediated knockdown of EGFR and AREG attenuated the hCG-induced upregulation of VEGF. This study demonstrated that granulosa cell-secreted AREG plays an important role in the development of OHSS, suggesting that the EGFR/HER2-mediated signaling could be a novel drug target for the prevention and treatment of OHSS.
Summary Sentence
AREG-EGFR/HER2 partially mediates hCG-induced VEGF expression in human granulosa cells. Upregulation of AREG and EGFR/HER2 can enhance the hCG-induced VEGF expression which contributes to the development of OHSS.
Jeremy R. Egbert, Paul G. Fahey, Jacob Reimer, Corie M. Owen, Alexei V. Evsikov, Viacheslav O. Nikolaev, Oliver Griesbeck, Russell S. Ray, Andreas S. Tolias, Laurinda A. Jaffe
In mammalian ovarian follicles, follicle stimulating hormone (FSH) and luteinizing hormone (LH) signal primarily through the G-protein Gs to elevate cAMP, but both of these hormones can also elevate Ca2+ under some conditions. Here, we investigate FSH- and LH-induced Ca2+ signaling in intact follicles of mice expressing genetically encoded Ca2+ sensors, Twitch-2B and GCaMP6s. At a physiological concentration (1 nM), FSH elevates Ca2+ within the granulosa cells of preantral and antral follicles. The Ca2+ rise begins several minutes after FSH application, peaks at ∼10 min, remains above baseline for another ∼10 min, and depends on extracellular Ca2+. However, suppression of the FSH-induced Ca2+ increase by reducing extracellular Ca2+ does not inhibit FSH-induced phosphorylation of MAP kinase, estradiol production, or the acquisition of LH responsiveness. Like FSH, LH also increases Ca2+, when applied to preovulatory follicles. At a physiological concentration (10 nM), LH elicits Ca2+ oscillations in a subset of cells in the outer mural granulosa layer. These oscillations continue for at least 6 h and depend on the activity of Gq family G-proteins. Suppression of the oscillations by Gq inhibition does not inhibit meiotic resumption, but does delay the time to 50% ovulation by about 3 h. In summary, both FSH and LH increase Ca2+ in the granulosa cells of intact follicles, but the functions of these Ca2+ rises are only starting to be identified.
Summary Sentence
Both FSH and LH increase Ca2+ in the granulosa cells of intact ovarian follicles from mice expressing genetically encoded sensors.
Connective tissue growth factor (also known as CTGF or CCN2) is a secreted matricellular protein that belongs to the CCN family. With wide-ranging biological activities and tissue expression patterns, CTGF plays a critical role in regulating various cellular functions. In the female reproductive system, CTGF is highly expressed in granulosa cells in growing ovarian follicles and is involved in the regulation of follicular development, ovulation, and luteal function. In the mammalian ovary, bone morphogenetic protein 6 (BMP6) is an important intraovarian modulator of follicular development. In this study, we demonstrated that BMP6 treatment significantly increased the expression of CTGF in both primary and immortalized human granulosa cells. Using both pharmacological inhibitors and Small interfering RNA-mediated knockdown approaches, we showed that ALK2 and ALK3 type I receptors are required for BMP6-induced cellular activities. Furthermore, this effect is most likely mediated by a Sma- and Mad-related protein (SMAD)-dependent pathway. Our studies provide novel insight into the molecular mechanisms by which an intraovarian growth factor affects the production of another factor via a paracrine effect in human granulosa cells.
Summary Sentence
BMP6 induces the expression of CTGF, which is most likely mediated by an ALK2/ALK3-SMAD dependent signaling pathway in human granulosa cells.
Zona pellucida (ZP), which enwraps the oocyte during folliculogenesis, initially forms in the primary follicle and plays an important role in female fertility. Here, we investigated a mouse strain (“mutant mice” for short) carrying two types of ZP defects in folliculogenesis, i.e., ZP thinned (but intact) and ZP cracked, caused by targeted mutation in the Zp1 gene. Using this mutant mouse strain and wild-type mouse as control, we studied the effects of the ZP defects on the development of oocytes and granulosa cells during folliculogenesis. For each ZP defect, we examined the morphology of transzonal projections and apoptosis of granulosa cells in the corresponding growing follicles, as well as the morphology of corresponding ovulated eggs and their abilities to develop into viable individuals. Our results suggested that ZP integrity rather than thickness or porosity is crucial for preventing the ectopia of granulosa cells, maintaining adequate routine bilateral signaling between oocyte and surrounding granulosa cells, and thus for ensuring the survival of granulosa cells and the establishment of the full developmental competence of oocytes. This is the first study to elucidate the effects of different degrees of ZP defects caused by the same gene mutation, on the apoptosis of granulosa cells and developmental competence of oocytes, and to explore the potential mechanisms underlying these effects.
Summary Sentence
Zona pellucida integrity rather than thickness or porosity is important for maintaining transzonal projections, ensuring the survival of granulosa cells and the establishment of the full developmental competence of oocytes during folliculogenesis.
Appropriate remodeling of the female lower reproductive tract and pelvic floor is essential during normal mammalian pregnancy, labor, and postpartum recovery. During mouse pregnancy, in addition to reproductive tract modifications, the pubic symphysis (PS) is remodeled into a soft interpubic ligament (IpL) to provide safe delivery of the offspring and fast postpartum recovery. Although temporal changes in the phenotypes of myeloid cells, such as mononuclear phagocytes, are crucial to remodeling the lower reproductive tract organs in preparation for a safe delivery, little is known about the involvement of recruited monocytes or macrophages in mouse PS remodeling. We used combined light microscopy, electron microscopy, and qPCR analysis to investigate the profile of recruited monocytes and macrophage polarization markers in C57Bl6 mouse interpubic tissues during pregnancy (D12, D18, and D19) and early days postpartum (1 dpp and 3 dpp) to better identify their presence in proper remodeling of the mouse PS. Our morphological data show that the number of recruited monocytes is increased in interpubic tissues and that recruited monocytes differentiate into proinflammatory or anti-inflammatory macrophage phenotypes from D18 to 3 dpp, which may contribute to dynamic changes in the gene expression of specific inflammatory mediators involved in interpubic tissue remodeling at these time points. Therefore, our morphological and quantitative gene expression data suggest that both differentiated macrophages from recruited monocytes and polarized macrophages may collaborate for IpL relaxation at labor and the appropriate repair of the PS after the first pregnancy.
Summary Sentence
Recruited monocytes and mature macrophages are present in the mouse pubic symphysis and may contribute to mouse pubic symphysis relaxation during late pregnancy and postpartum recovery.
We recently established a germ cell transplantation system in salmonids. Donor germ cells transplanted into the body cavity of recipient embryos migrate toward and are incorporated into the recipient gonad, where they undergo gametogenesis. Among the various types of testicular germ cells, only type A spermatogonia (A-SG) can be incorporated into the recipient gonads. Enriching for A-SG is therefore important for improving the efficiency of germ cell transplantation. To enrich for A-SG, an antibody against a cell surface marker is a convenient and powerful approach used in mammals; however, little is known about cell surface markers for A-SG in fish. To that end, we have produced novel monoclonal antibodies (mAbs) against cell-surface molecules of rainbow trout (Oncorhynchus mykiss) A-SG. We inoculated mice with living A-SG isolated from pvasa-GFP transgenic rainbow trout using GFP-dependent flow cytometry. By fusing lymph node cells of the inoculated mice with myeloma cells, we generated 576 hybridomas. To identify hybridomas that produce mAbs capable of labeling A-SG preferentially and effectively, we screened them using cell ELISA, fluorescence microscopy, and flow cytometry. We thereby identified two mAbs that can label A-SG. By using flow cytometry with these two antibodies, we could enrich for A-SG with transplantability to recipient gonads from amongst total testicular cells. Furthermore, one of these mAbs could also label zebrafish (Danio rerio) spermatogonia. Thus, we expect these monoclonal antibodies to be powerful tools for germ cell biology and biotechnology.
Summary Sentence
We generated novel monoclonal antibodies in order to identify and isolate live type A spermatogonia from rainbow trout testicular cells.
An interspecific hybrid marine fish that developed a testis-like gonad without any germ cells, i.e., a germ cell-less gonad, was produced by hybridizing a female blue drum Nibea mitsukurii with a male white croaker Pennahia argentata. In this study, we evaluated the suitability of the germ cell-less fish as a recipient by transplanting donor testicular cells directly into the gonads through the urogenital papilla. The donor testicular cells were collected from hemizygous transgenic, green fluorescent protein (gfp) (+/–) blue drum, and transplanted into the germ cell-less gonads of the 6-month-old adult hybrid croakers. Fluorescent and histological observations showed the colonization, proliferation, and differentiation of transplanted spermatogonial cells in the gonads of hybrid croakers. The earliest production of spermatozoa in a hybrid recipient was observed at 7 weeks post-transplantation (pt), and 10% of the transplanted recipients produced donor-derived gfppositive spermatozoa by 25 weeks pt. Sperm from the hybrid recipients were used to fertilize eggs from wild-type blue drums, and approximately 50% of the resulting offspring were gfppositive, suggesting that all offspring originated from donor-derived sperm that were produced in the transplanted gfp (+/–) germ cells. To the best of our knowledge, this is the first report of successful spermatogonial transplantation using a germ cell-less adult fish as a recipient. This transplantation system has considerable advantages, such as the use of comparatively simple equipment and procedures, and rapid generation of donor-derived spermatogenesis and offspring, and presents numerous applications in commercial aquaculture.
Summary Sentence
Hybrid marine sciaenid fish showing germ cell-less phenotype are ideal recipients for developing spermatogonial transplantation in adult fish, and enable the rapid production of donor-derived sperm in 7 weeks post-transplantation.
More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.
Summary Sentence
Thirty testis-enriched genes are dispensable for male fertility based on phenotypic analyses of knockout mice produced by the CRISPR/Cas9 system.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere