Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Evidence indicates that microRNAs (miRNAs) play essential roles in early embryonic development. The miRNA-518 family is a special biomarker of the placenta, and miRNA-518b is abnormally expressed in placental tissue in preeclampsia. Early growth response protein 1 (EGR1), a zinc finger transcriptional factor, plays an essential role in regulating cell differentiation, angiogenesis, and migration. Moreover, earlier studies have shown that EGR1 protein plays a key role in implantation. However, little is known about the role of miR-518b and EGR1 on early embryonic arrest (EEA) in humans. In our study, increased miR-518b along with decreased EGR1 was found in human villus tissues with EEA. Furthermore, we demonstrated by luciferase assay that miR-518b is a direct regulator of EGR1. After comparing the effect of silencing EGR1, vascular endothelial growth factor (VEGF) individually, and EGR1/VEGF in combination, we found that EGR1 can inhibit migration and angiogenesis of HTR-8 SVneo cells by decreasing the VEGF expression. Hypoxia plays an initial role in early embryonic development, and we found that hypoxia reduces the expression of miR-518b and increases the expression of EGR1 and VEGF to facilitate migration and angiogenesis in a hypoxic model of HTR-8/SVneo cell line. Our findings provide new insights into the role of miR-518b in EEA and implicate the potential application of miR-518b in the diagnosis and development of intervention for EEA.
Summary Sentence
miR-518b/EGR1/VEGF plays an important role in regulating placental trophoblast migration and angiogenesis.
The proliferation and adhesion abilities of placental trophoblasts are critical for embryo implantation and successful pregnancy. Protein O-fucosyltransferase 1 (poFUT1) and the transcription factor c-Fos/c-Jun have been found to promote trophoblastic cell invade into the endometrium. Progesterone is critical to the regulation of embryonic implantation. However, the exact role of poFUT1 in embryo proliferation and adhesion to the endometrium, and the relationship between progesterone, c-Fos/c-Jun, and poFUT1 has not been studied in detail. In the current study, we found that the serum levels of poFUT1 and progesterone significantly was decreased in miscarriage patients compared with those in normal pregnancy women, and there is a positive correlation between the changes in progesterone and poFUT1. Employing a human embryo trophoblastic cell line (JAR), we showed that progesterone facilitated the activation of c-Fos/c-Jun. Using an electrophoretic mobility shift assay and chromatin immunoprecipitation, we confirmed that the specific transcription factor c-Fos/c-Jun regulated the poFUT1 promoter, which could enhance poFUT1 transcriptional activity, thus further increasing trophoblast cell proliferation and adhesion potential. Taking these findings together, progesterone upregulates poFUT1 expression via the specific transcription factor c-Fos/c-Jun, and then increase trophoblast cell proliferation and adhesion potential. poFUT1 and progesterone may be used together as potential markers of miscarriage, and they may be diagnostic and therapeutic targets for miscarriage.
Summary Sentence
Serum levels of progesterone and poFUT1 significantly decrease in miscarriage patients compared with those in normal pregnancy women, and there is a positive correlation between the changes in poFUT1 and progesterone. Progesterone upregulated poFUT1 expression via the specific transcription factor c-Fos/c-Jun, and then increased trophoblast cell proliferation and adhesion potential. poFUT1 and progesterone may be used together as potential markers of miscarriage, and they may be diagnostic and therapeutic targets for miscarriage.
The overexpression of hepatocyte nuclear factor-1 beta (HNF1β) in endometriotic lesion has been demonstrated. However, the role of HNF1β in endometriosis remains largely unknown. Human endometriotic 12Z cells showed higher level of HNF1β when compared with normal endometrial HES cells. In human endometriotic 12Z cells, HNF1β knockdown increased susceptibility to apoptotic cell death by oxidative stress, while HNF1β overexpression suppressed apoptosis. In addition, HNF1β knockdown and overexpression significantly decreased and increased, respectively, the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)dependent antiapoptotic genes. Knockdown of the antiapoptotic genes significantly reduced the HNF1β-induced resistance against oxidative stress in 12Z cells. Furthermore, HNF1β regulated the transcriptional activity of NF-κB, and an NF-κB inhibitor suppressed the HNF1β-enhanced NF-κBdependent antiapoptotic gene expression and the resistance of the 12Z cells against cell death. Taken together, these data suggest that HNF1β overexpression may protect endometriotic cells against oxidative damage by augmenting antiapoptotic gene expression.
Dingkun Pill (DK) is one of the representative traditional Chinese medicines, which has been used in the treatment of gynecological diseases for hundreds of years. Accumulative observations and evidence have shown the beneficial effects of DK, including enhancing the function of hypothalamic-pituitary-ovarian axis. However, the underlying mechanisms remain elusive. In this study, the effects of DK on uterine receptivity and implantation were explored by a series of studies with different mouse models. The results showed that DK can advance the time of implantation by influencing the expression of estrogen target genes to facilitate embryo implantation. DK was efficient to activate embryo implantation at the presence of suboptimal estrogen in delayed implantation mouse model. Our further study revealed that the improvement of DK on receptivity establishment is attributed to the differential regulation of DK on implantation-associated genes. This study provides previously unappreciated molecular mechanism of DK in embryo implantation and benefits the potential clinical application of DK in human reproduction improvement.
Summary Sentence
Dingkun Pill (DK), one of the representative traditional Chinese medicines, facilitates the establishment of uterine receptivity through enhancing the estrogen sensitivity.
The disruption of protein expression is a major approach used for investigating protein function in mammalian oocytes. This is often achieved with RNAi/morpholino-mediated knockdown or gene knockout, leading to long-term loss of proteins of interest. However, these methods have noteworthy limitations, including (a) slow protein turnover can prohibit use of these approaches; (b) essential roles in early events precludes characterization of functions in subsequent events; (c) extended protein loss can allow time for compensatory mechanisms and other unanticipated events that confound interpretation of results. The work presented here examines the use of auxin-inducible degradation, a powerful new approach that overcomes these limitations through the depletion of one's protein of interest through controllable ubiquitin-mediated degradation. This method has been employed in yeast and mammalian cell lines, and here we demonstrate the utility of auxin-inducible degradation in mouse oocytes at multiple stages of meiosis, through degradation of exogenously expressed EGFP. We also evaluate important parameters for experimental design for use of this system in oocytes. This study thus expands the toolkit of researchers in oocyte biology, establishing the use of this unique and versatile approach for depleting proteins in oocytes, and providing researchers with valuable information to make use of this system.
Summary Sentence
Auxin-inducible degradation can be used to deplete proteins in oocytes throughout meiosis (prophase I to metaphase II), providing a valuable alternative to longer-term and post-transcriptional depletion methods such as knockdown and knockout.
Culture media used in assisted reproduction are commonly supplemented with gonadotropin hormones to support the nuclear and cytoplasmic maturation of in vitro matured oocytes. However, the effect of gonadotropins on protein synthesis in oocytes is yet to be fully understood. As published data have previously documented a positive in vitro effect of follicle-stimulating hormone (FSH) on cytoplasmic maturation, we exposed mouse denuded oocytes to FSH in order to evaluate the changes in global protein synthesis. We found that dose-dependent administration of FSH resulted in a decrease of methionine incorporation into de novo synthesized proteins in denuded mouse oocytes and oocytes cultured in cumulus-oocyte complexes. Similarly, FSH influenced methionine incorporation in additional mammalian species including human. Furthermore, we showed the expression of FSH-receptor protein in oocytes. We found that major translational regulators were not affected by FSH treatment; however, the amino acid uptake became impaired. We propose that the effect of FSH treatment on amino acid uptake is influenced by FSH receptor with the effect on oocyte metabolism and physiology.
Summary Sentence
FSH treatment decrease methionine incorporation into de novo synthesized proteins in mouse, porcine, and bovine oocytes, and FSHR protein is expressed in oocytes and 2cell embryo.
The seminal vesicles can be infected by microorganisms, thereby resulting in vesiculitis and impairment in male fertility. Innate immune responses in seminal vesicles cells to microbial infections, which facilitate vesiculitis, have yet to be investigated. The present study aims to elucidate pattern recognition receptor–mediated innate immune responses in seminal vesicles epithelial cells. Various pattern recognition receptors, including Toll-like receptor 3, Toll-like receptor 4, cytosolic ribonucleic acid, and deoxyribonucleic acid sensors, are abundantly expressed in seminal vesicles epithelial cells. These pattern recognition receptors can recognize their respective ligands, thus activating nuclear factor kappa B and interferon regulatory factor 3. The pattern recognition receptor signaling induces expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha (Tnfa) and interleukin 6 (Il6), chemokines monocyte chemoattractant protein-1 (Mcp1) and C–X–C motif chemokine 10 (Cxcl10), and type 1 interferons Ifna and Ifnb. Moreover, pattern recognition receptor-mediated innate immune responses up-regulated the expression of microsomal prostaglandin E synthase and cyclooxygenase 2, but they down-regulated semenogelin-1 expression. These results provide novel insights into the mechanism underlying vesiculitis and its impact on the functions of the seminal vesicles.
Summary Sentence
Microbe infections induce seminal vesicle innate immune response through pattern recognition receptor, which may lead to male infertility.
Emily R. Bryan, Avinash Kollipara, Logan K. Trim, Charles W. Armitage, Alison J. Carey, Bettina Mihalas, Kate A. Redgrove, Eileen A. McLaughlin, Kenneth W. Beagley
The incidence of Chlamydia infection, in both females and males, is increasing worldwide. Male infections have been associated clinically with urethritis, epididymitis, and orchitis, believed to be caused by ascending infection, although the impact of infection on male fertility remains controversial. Using a mouse model of male chlamydial infection, we show that all the major testicular cell populations, germ cells, Sertoli cells, Leydig cells, and testicular macrophages can be productively infected. Furthermore, sperm isolated from vas deferens of infected mice also had increased levels of DNA damage as early as 4 weeks post-infection. Bilateral vasectomy, prior to infection, did not affect the chlamydial load recovered from testes at 2, 4, and 8 weeks post-infection, and Chlamydia-infected macrophages were detectable in blood and the testes as soon as 3 days post-infection. Partial depletion of macrophages with clodronate liposomes significantly reduced the testicular chlamydial burden, consistent with a hematogenous route of infection, with Chlamydia transported to the testes in infected macrophages. These data suggest that macrophages serve as Trojan horses, transporting Chlamydia from the penile urethra to the testes within 3 days of infection, bypassing the entire male reproductive tract. In the testes, infected macrophages likely transfer infection to Leydig, Sertoli, and germ cells, causing sperm DNA damage and impaired spermatogenesis.
Summary Sentence
Hematogenous dissemination of C. muridarum from the urethra in macrophages causes testicular infection and sperm DNA damage.
In recent studies, luteinizing hormone (LH) was reported to play important roles in oocyte maturation. However, the mechanism by which LH signaling, especially regarding the steroidogenesis process, affects oocyte maturation has not been clarified. In this study, zebrafish models with a functional deficiency in luteinizing hormone beta (Lhb) or steroidogenic acute regulatory protein (Star), an enzyme that promotes the transport of cholesterol into the inner mitochondrial membrane for maturation-induced hormone (MIH) production, were generated using transcription activator-like effector nucleases (TALENs). Similar phenotypes of the maturation-arrested oocytes in both female mutants have been observed. The levels of MIH in the oocytes of the female mutants were clearly decreased in both the lhb and star knockout zebrafish. The expression of star was dramatically down-regulated in the lhb mutant follicles and was clearly promoted by forskolin and hCG in vitro. Furthermore, treatment with the MIH precursors, pregnenolone or progesterone, as well as with MIH itself rescued the maturation-arrested oocyte phenotypes in both lhb and star mutants. The plasma levels of other steroids, including testosterone, estradiol, and cortisol, were not affected in the lhb mutants, while the levels of gonad hormones testosterone and estradiol were significantly increased in the star mutants. The cortisol levels were decreased in the star mutants. Collectively, our results confirm that LH plays important roles in the initiation of MIH synthesis from cholesterol and maintains oocyte maturation in zebrafish, as well as provide evidence that Star might act downstream of LH signaling in steroidogenesis.
Summary Sentence
Steroidogenic acute regulatory protein was a down-stream target of the luteinizing hormone signaling in the regulation of MIH synthesis which maintains oocyte maturation in zebrafish.
Gestational diabetes mellitus (GDM) is an obstetric disorder affecting approximately 10% of pregnancies. The four high-fat, high-sucrose (HFHS) mouse model emulates GDM in lean women. Dams are fed a HFHS diet 1 week prior to mating and throughout gestation resulting in inadequate insulin response to glucose in mid-late pregnancy. The offspring of HFHS dams have increased adiposity, thus, we hypothesized that maternal metabolic alterations during lean GDM would compromise ovarian function in offspring both basally and in response to a control or HFHS diet in adulthood. Briefly, DLPL were lean dams and control diet pups; DLPH were lean dams and HFHS pups; DHPL were HFHS dams and control diet pups; and DHPH were HFHS dams and HFHS pups. A HFHS challenge in the absence of maternal GDM (DLPL vs. DLPH) increased 3 and decreased 30 ovarian proteins. Maternal GDM in the absence of a dietary stress (DLPL vs. DHPL) increased abundance of 4 proteins and decreased abundance of 85 proteins in the offspring ovary. Finally, 87 proteins increased, and 4 proteins decreased in offspring ovaries due to dietary challenge and exposure to maternal GDM in utero (DLPL vs. DHPH). Canopy FGF signaling regulator 2, deleted in azoospermia-associated protein 1, septin 7, and serine/arginine-rich splicing factor 2 were altered across multiple offspring groups. Together, these findings suggest a possible impact on fertility and oocyte quality in relation to GDM exposure in utero as well as in response to a western diet in later life.
Summary Sentence
Altered abundance of ovarian proteins in offspring who experienced maternal GDM highlights the potential long-term effects of metabolic changes on ovarian function.
Transient receptor potential cation channel, mucolipin subfamily, member 1 (TRPML1) (MCOLN1/Mcoln1) is a lysosomal counter ion channel. Mutations in MCOLN1 cause mucolipidosis type IV (MLIV), a progressive and severe lysosomal storage disorder with a slow onset. Mcoln1-/- mice recapitulate typical MLIV phenotypes but roles of TRPML1 in female reproduction are unknown. Despite normal mating activities, Mcoln1-/- female mice had reduced fertility at 2 months old and quickly became infertile at 5 months old. Progesterone deficiency was detected on 4.5 days post coitum/gestation day 4.5 (D4.5). Immunohistochemistry revealed TRPML1 expression in luteal cells of wild type corpus luteum (CL). Corpus luteum formation was not impaired in 5–6 months old Mcoln1-/- females indicated by comparable CL numbers in control and Mcoln1-/- ovaries on both D1.5 and D4.5. In the 5–6 months old Mcoln1-/- ovaries, histology revealed less defined corpus luteal cord formation, extensive luteal cell vacuolization and degeneration; immunofluorescence revealed disorganized staining of collagen IV, a basal lamina marker for endothelial cells; Nile Red staining detected lipid droplet accumulation, a typical phenotype of MLIV; immunofluorescence of heat shock protein 60 (HSP60, a mitochondrial marker) and in situ hybridization of steroidogenic acute regulatory protein (StAR, for the rate-limiting step of steroidogenesis) showed reduced expression of HSP60 and StAR, indicating impaired mitochondrial functions. Luteal cell degeneration and impaired mitochondrial functions can both contribute to progesterone deficiency in the Mcoln1-/- mice. This study demonstrates a novel function of TRPML1 in maintaining CL luteal cell integrity and function.
Summary Sentence
Our finding that Mcoln1-/- female mice have luteal cell degeneration and progesterone deficiency reveals a novel role of TRPML1 in luteal cell survival and function.
The immortalized mouse gonadotrope cell lines alphaT3-1 and LbetaT2 cells have been a substitute model for primary gonadotropes. These cell lines have provided a homogeneous cell population, as compared to the dissociated anterior pituitaries, which contain a heterogeneous population of cells potentially responsive to estradiol-17beta (E2). Nonclassical actions of E2 assumed to occur through the plasma membrane estrogen receptor 1 (ESR1, also known as ERalpha). These actions have included inhibition of gonadotropin-releasing hormone (GnRH)-induced increases in intracellular calcium concentrations and phosphorylation of p44/42 mitogen-activated protein kinase (ERK-1/2) in ovine pituitaries including primary gonadotropes in vitro. The objective of the present experiment was to determine if alphaT3-1 and LbetaT2 are cell models with limitations to examine the nonclassical actions of E2 occurring in gonadotropes. Experiments were conducted to determine if the cells have ESR1 at the plasma membrane using biotinylation cell and isolation of surface protein and staining with a fluorescently labeled E2 conjugate. The alphaT3-1 cells contain ESR1 associated with but not enriched within lipid rafts of the plasma membrane and do not translocate to lipid rafts upon binding of E2. In contrast, LbetaT2 cells lack ESR1 associated with the plasma membrane. Pretreatment with E2 did not cause inhibition of GnRH-stimulated increases in intracellular concentrations of calcium for either cell type. Phosphorylation of ERK-1/2 was not stimulated by E2 in either cell type. Although these cells lines have been used extensively to study GnRH signaling, in vitro or in vivo effects of nonclassical actions of E2 cannot be replicated in either cell line.
Summary Sentence
Cell signaling through membrane estrogen receptors cannot be mimicked in immature and mature gonadotrope cell lines as observed in isolated ovine gonadotropes.
Nr5a1 (Sf-1) up-regulates lhb expression across vertebrates; however, its regulatory roles on fshb remain to be defined. Moreover, the involvement of Nr5a2 in the regulation of gonadotropin expression is not clear either. In the present study, the involvement of Nr5a1b (a homologue of Nr5a1) and Nr5a2 in the regulation of lhb and fshb expression in the orange-spotted grouper was examined. Dual fluorescent immunohistochemistry using homologous antisera showed that in the pituitary of orange-spotted groupers, Lh cells contain both immunoreactive Nr5a1b and Nr5a2 signals, whereas Fsh cells contain neither of them. In LβT2 cells, Nr5a1b up-regulated basal activities of lhb and fshb promoters possibly via Nr5a sites, and synergistically (on lhb promoter) or additively (on fshb promoter) with forskolin. Surprisingly, Nr5a2 inhibited basal activities of lhb promoter possibly via Nr5a sites and attenuated the stimulatory effects of both forskolin and Nr5a1b. In contrast, Nr5a2 had no effects on fshb promoter. Chromatin immunoprecipitation analysis showed that both Nr5a1b and Nr5a2 bound to lhb promoter, but not fshb promoter in the pituitary of the orange-spotted grouper. The abundance of Nr5a1b bound to lhb promoter was significantly higher at the vitellogenic stage than the pre-vitellogenic stage, whereas that of Nr5a2 exhibited an opposite trend. Taken together, data of the present study demonstrated antagonistic effects of Nr5a1b and Nr5a2 on lhb transcription in the orange-spotted grouper and revealed novel regulatory mechanisms of differential expression of lhb and fshb genes through Nr5a homologues in vertebrates.
Summary Sentence
Nr5a1b stimulates whereas Nr5a2 inhibits lhb expression, but neither of them regulates fshb expression in the orange-spotted grouper.
Although progesterone (P4) supplementation is the most widely used therapy for the prevention of preterm labor (PTL), reports of its clinical efficacy have been conflicting. We have previously shown that the anti-inflammatory effects of P4 can be enhanced by increasing intracellular cyclic adenosine monophosphate (cAMP) levels in primary human myometrial cells. Here, we have examined whether adding aminophylline (Am), a non-specific phosphodiesterase inhibitor that increases intracellular cAMP levels, to P4 might improve its efficacy using in vivo and in vitro models of PTL. In a mouse model of lipopolysaccharide (LPS)-induced PTL, we found that the combination of P4 and Am delayed the onset of LPS-induced PTL, while the same dose of P4 and Am alone had no effect. Pup survival was not improved by either agent alone or in combination. Myometrial prolabor and inflammatory cytokine gene expression was reduced, but the reduction was similar in P4 and P4/Am treated mice. There was no effect of the combination of P4 and Am on an ex vivo assessment of myometrial contractility. In human myometrial cells and myometrial tissue explants, we found that the combination had marked anti-inflammatory effects, reducing cytokine and COX-2 mRNA and protein levels to a greater extent than either agent alone. These data suggest that the combination of P4 and Am has a more potent anti-inflammatory effect than either agent alone and may be an effective combination in women at high-risk of PTL.
Summary Sentence
The combination of aminophylline and progesterone delays LPS-induced parturition and represses inflammation induced gene expression in myometrial explants and cell cultures
Lindsay S. Cahill, Clare L. Whitehead, Sebastian R. Hobson, Greg Stortz, John C. Kingdom, Ahmet Baschat, Kellie E. Murphy, Lena Serghides, Christopher K. Macgowan, John G. Sled
Antenatal corticosteroids are often administered to women at risk of preterm birth to accelerate fetal lung development; however, there is evidence that this treatment may adversely affect placental function in some fetuses. Our group has recently demonstrated that wave reflections in the umbilical artery (UA), measured using high-frequency ultrasound, are sensitive to placental vascular abnormalities. In the present study, we used this approach to investigate the effect of maternal administration of betamethasone, a clinically relevant corticosteroid, on the fetoplacental vasculature of the mouse. Fetuses were assessed at embryonic day (E)15.5 and E17.5 in C57BL6/J mice. At both gestational ages, the UA diameter, UA blood flow, and the wave reflection coefficient were significantly elevated in the betamethasone-treated mice compared to vehicle-treated controls. These observations support the interpretation that placental vascular resistance dropped with betamethasone treatment to an extent that could not be explained by vasodilation of the UA alone. Consistent with clinical studies, the effect of betamethasone on UA end-diastolic velocity was heterogeneous. Our results suggest that UA wave reflections are more sensitive to acute changes in placental vascular resistance compared with the UA pulsatility index, and this technique may have clinical application to identify a favorable placental vascular response to fetal therapies such as antenatal corticosteroids, where the fetal heart rate is likely to vary.
Summary Sentence
Antenatal betamethasone administration in healthy pregnant mice resulted in decreased placental vascular resistance, altering wave reflection parameters that are sensitive to these acute changes in vascular tone.
Prokineticin 1 (PROK1) quantification in global follicular fluid (FF) has been recently reported as a predictive biomarker of in vitro fertilization (IVF) outcome. It is now necessary to evaluate its clinical usefulness in individual follicles.
Objectives:
To evaluate the clinical value of PROK1 secretion in individual FF to predict oocyte competence. To determine the impact of follicular size, oocyte maturity, and gonadotropin treatments on PROK1 secretion.
Design and setting:
Prospective cohort study from May 2015 to May 2017 at the University Hospital of Grenoble.
Patients:
A total of 69 infertile couples underwent IVF.
Intervention(s):
Collection of 298 individual FF from 44 women undergoing IVF; 52 individual cumulus cell (CC) samples and 15 CC primary cultures from 25 women undergoing IVF-intracytoplasmic sperm injection (ICSI).
Main Outcome Measure(s):
Oocyte competence was defined as the ability to sustain embryo development to the blastocyst stage. Follicular size was measured by 2D-sonography. PROK1 concentration was quantified by ELISA assay.
Results:
PROK1 concentration was correlated to follicular size (r = 0.85, P = 2.2 × 10–16). Normalized PROK1 concentration in FF was predictive of subsequent oocyte competence (AUROC curve = 0.76 [95% CI, 0.69–0.83]; P = 1.7 × 10–9), irrespectively of day-2 embryo morphokinetic parameters. The expression and secretion of PROK1 were increased in FF and CC of mature oocytes (P < 0.01). Follicle Stimulating Hormone and hCG up-regulated PROK1 secretion in CC primary cultures (P < 0.01; P < 0.05), probably through the cAMP pathway (P < 0.01).
Conclusions:
PROK1 quantification in individual FF could constitute a new predictive biomarker of oocyte competence in addition with embryo morphokinetic parameters.
Enhancers are cis-elements that activate transcription and play critical roles in tissue- and cell type-specific gene expression. During spermatogenesis, genes coding for specialized sperm structures are expressed in a developmental stage- and cell type-specific manner, but the enhancers responsible for their expression have not been identified. Using the mouse acrosomal vesicle protein (Acrv1) gene that codes for the acrosomal protein SP-10 as a model, our previous studies have shown that Acrv1 proximal promoter activates transcription in spermatids; and the goal of the present study was to separate the enhancer responsible. Transgenic mice showed that three copies of the –186/–135 fragment (50 bp enhancer) placed upstream of the Acrv1 core promoter (–91/+28) activated reporter expression in testis but not somatic tissues (n = 4). Immunohistochemistry showed that enhancer activity was restricted to the round spermatids. The Acrv1 enhancer failed to activate transcription in the context of a heterologous core promoter (n = 4), indicating a likely requirement for enhancer-core promoter compatibility. Chromatin accessibility assays showed that the Acrv1 enhancer assumes a nucleosome-free state in male germ cells (but not liver), indicating occupancy by transcription factors. Southwestern assays (SWA) identified specific binding of the enhancer to a testis nuclear protein of 47 kDa (TNP47). TNP47 was predominantly nuclear and becomes abundant during the haploid phase of spermatogenesis. Two-dimensional SWA revealed the isoelectric point of TNP47 to be 5.2. Taken together, this study delineated a 50-bp enhancer of the Acrv1 gene for round spermatid-specific transcription and identified a putative cognate factor. The 50-bp enhancer could become useful for delivery of proteins into spermatids.
Summary Sentence
Functional assays and chromatin characteristics show that the –186/–135 region of the mouse Acrv1 gene acts as a transcriptional enhancer and activates round spermatid-specific gene expression in vivo.
Phthalates have a history of reproductive toxicity in animal models and associations with adverse reproductive outcomes in women. Human exposure to dibutyl phthalate (DBP) occurs via consumer products (7–10 µg/kg/day) and medications (1–233 µg/kg/day). Most DBP toxicity studies have focused on high supraphysiological exposure levels; thus, very little is known about exposures occurring at environmentally relevant levels. CD-1 female mice (80 days old) were treated with tocopherol-stripped corn oil (vehicle control) or DBP dissolved in oil at environmentally relevant (10 and 100 µg/kg/day) or higher (1000 µg/kg/day) levels for 30 days to evaluate effects on DNA damage response (DDR) pathway genes and folliculogenesis. DBP exposure caused dose-dependent effects on folliculogenesis and gene expression. Specifically, animals exposed to the high dose of DBP had more atretic follicles in their ovaries, while in those treated with environmentally relevant doses, follicle numbers were no different from vehicle-treated controls. DBP exposure significantly reduced the expression of DDR genes including those involved in homologous recombination (Atm, Brca1, Mre11a, Rad50), mismatch repair (Msh3, Msh6), and nucleotide excision repair (Xpc, Pcna) in a dose-specific manner. Interestingly, staining for the DNA damage marker, γH2AX, was similar between treatments. DBP exposure did not result in differential DNA methylation in the Brca1 promoter but significantly reduced transcript levels for the maintenance DNA methyltransferase, Dnmt1, in the ovary. Collectively, these findings show that oral exposure to environmentally relevant levels of DBP for 30 days does not significantly impact folliculogenesis in adult mice but leads to aberrant ovarian expression of DDR genes.
Summary Sentence
Exposure to human relevant doses of dibutyl phthalate results in significant disruption of DNA damage repair gene expression in the mouse ovary.
Merli Saare, Triin Laisk, Hindrek Teder, Priit Paluoja, Priit Palta, Mariann Koel, Fred Kirss, Helle Karro, Deniss Sõritsa, Andres Salumets, Kaarel Krjutškov, Maire Peters
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere