Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Alternative splicing (AS) of mRNA precursors allows the synthesis of multiple mRNAs from a single primary transcript, significantly expanding the information content and regulatory possibilities of higher eukaryotic genomes. During mammalian development, AS drives certain decisive changes in different physiological processes. As development progresses, the maternal-to-zygotic transition (MZT) will trigger two processes: elimination of a subset of maternal mRNA and transcription of the zygote genome begins. Recent high-throughput technological advancements have facilitated genome-wide AS, whereas its analysis in mouse oocyte transition to the zygote stage has not been reported. We present a high-resolution global analysis of AS transitions and discovered extensive AS transitions between mouse oocyte and zygote. The difference of AS patterns was further confirmed using reverse transcription-polymerase chain reaction analysis. Many genes with specific AS events in mouse oocytes are differentially expressed between oocyte and zygote, but only a few genes with specific AS events in zygote are differentially expressed between oocyte and zygote. We provide a landscape of AS events in mouse oocyte and zygote. Our results advance the understanding of AS transitions during mouse fertilization and its potential functions for MZT and further development.
Summary Sentence
AS events that are differentially expressed between oocyte and zygote are important in the regulation of embryo development.
Intrauterine growth retardation (IUGR) is a serious reproductive problem in humans. The objective of this study was to investigate the effects of daily maternal curcumin supplementation during pregnancy on placental function and fetal growth in a mouse model of IUGR fed the low-protein (LP) diet. Pregnant mice were divided into four groups: (1) normal protein (19% protein) diet (NP); (2) LP (8% protein) diet; (3) LP diet + 100 mg/kg curcumin (LPL); (4) LP diet +400 mg/kg curcumin (LPH). The results showed that the LP group decreased fetal weight, placental weight, placental efficiency, serum progesterone level, placental glutathione peroxidase activity activity, blood sinusoids area, and antioxidant gene expression of placenta. In addition, in comparison with the NP group, LP diet increased serum corticosterone level, placental malondialdehyde content, and apoptotic index. Daily curcumin administration decreased the placental apoptosis, while it increased placental efficiency, placental redox balance, blood sinusoids area, and antioxidant-related protein expression in fetal liver. The antioxidant gene expression of placenta and fetal liver was normalized to the NP level after curcumin administration. In conclusion, daily curcumin supplementation could improve maternal placental function and fetal growth in mice with IUGR.
Summary Sentence
Daily curcumin supplementation could improve maternal placental function and fetal growth in mice with IUGR.
Preeclampsia is a serious hypertensive disorder of pregnancy, which is only cured with delivery of the placenta, thereby commonly necessitating preterm birth of the fetus. Low-molecular-weight heparin (LMWH) has demonstrated potential to reduce the incidence of preeclampsia in high-risk pregnant women, although the underlying mechanism by which LMWH protects against preeclampsia is unknown. Given the complex structure and biologic actions of heparin, we tested the hypothesis that heparin can mediate preeclampsia prevention via nonanticoagulant pathways. We compared the effects of a nonanticoagulant, glycol-split LMWH (gsHep)—rendered nonanticoagulant through disruption of the antithrombin binding regions—with the LMWH dalteparin in the rat reduced uterine perfusion pressure (RUPP) surgical model of preeclampsia. Although RUPP animals exhibit significantly elevated blood pressure and reduced plasma levels of placental growth factor (PGF) compared to sham, neither dalteparin nor gsHep treatment significantly impacted these parameters. However, the observed positive correlation between PGF levels and number of viable fetuses in RUPP-induced animals suggests that reduced PGF levels were predominately due to placental loss. Daily subcutaneous injections of low-dose dalteparin but not gsHep significantly restored fetal growth that was impaired by RUPP surgery. Placentas from RUPP animals exhibited an abnormal labyrinth structure, characterized by expanded sinusoidal blood spaces, relative to sham-operated animals. Morphometric analysis demonstrated that dalteparin but not gsHep treatment normalized development of the labyrinth in RUPP-exposed conceptuses. These data suggest that the antithrombin-binding regions of LMWH are required to confer its protective effects on fetal growth and placental development.
Summary Sentence
Low-molecular-weight heparin promotes placental development and fetal growth, thereby providing a mechanism by which heparin therapy could benefit pregnant women at risk of preeclampsia with growth restricted fetuses.
Maternal perturbations or sub-optimal conditions during fetal development can predispose the offspring to diseases in adult life. Animal and human studies show that prenatal androgen excess may be an underlying cause of polycystic ovary syndrome (PCOS) later in life. In women, PCOS is a common fertility disorder with comorbid metabolic dysfunction. Here, using a sheep model of PCOS phenotype, we elucidate the epigenetic changes induced by prenatal (30–90 day) testosterone (T) treatment and its effect on gene expression in fetal day 90 (D90) and adult year 2 (Y2) ovaries. RNA-seq study shows 65 and 99 differentially regulated genes in prenatal T-treated fetal and adult ovaries, respectively. Interestingly, there were no differences in gene inducing histone marks H3K27ac, H3K9ac, and H3K4me3 or in gene silencing marks, H3K27me3 and H3K9me3 in the fetal D90 ovaries of control and excess T-exposed fetuses. In contrast, except for H3K4me3 and H3K27me3, all the other histone marks were upregulated in the prenatal T-treated adult Y2 ovary. Chromatin immunoprecipitation (ChIP) studies in adult Y2 ovaries established a direct relationship between the epigenetic modifications with the upregulated and downregulated genes obtained from RNA-seq. Results show increased gene inducing marks, H3K27ac and H3K9ac, on the promoter region of upregulated genes while gene silencing mark, H3K9me3, was also significantly increased on the downregulated genes. This study provides a mechanistic insight into prenatal T-induced developmental programming and its effect on ovarian gene expression that may contribute to reproductive dysfunction and development of PCOS in adult life.
Summary sentence
A direct correlation between changes in epigenetic marks and gene expression in adult ovaries from prenatal T-treated sheep establishes epigenetic changes as one of the underlying causes for differential expression of genes in PCOS ovary.
Ovarian cancer (OvCa) remains the most common cause of death from gynecological malignancies. Genetically engineered mouse models have been used to study initiation, origin, progression, and/or mechanisms of OvCa. Based on the clinical features of OvCa, we examined a quadruple combination of pathway perturbations including PTEN, TRP53, RB1, and/or CDH1. To characterize the cancer-promoting events in the ovarian surface epithelium (OSE), Amhr2cre/+ mice were used to ablate floxed alleles of Pten, Trp53, and Cdh1, which were crossed with TgK19GT121 mice to inactivate RB1 in KRT19-expressing cells. Inactivation of PTEN, TRP53, and RB1 with or without CDH1 led to the development of type I low-grade OvCa with enlarged serous papillary carcinomas and some high-grade serous carcinomas (HGSCs) in older mice. Initiation of epithelial hyperplasia and micropapillary carcinoma started earlier at 1 month in the triple mutations of Trp53, Pten, and Rb1 mice as compared to 2 months in quadruple mutations of Trp53, Pten, Rb1, and Cdh1 mice, whereas both genotypes eventually developed enlarged proliferating tumors that invaded into the ovary at 3–4 months. Mice with triple and quadruple mutations developed HGSC and/or metastatic tumors, which disseminated into the peritoneal cavity at 4–6 months. In summary, inactivation of PTEN, TRP53, and RB1 initiates OvCa from the OSE. Additional ablation of CDH1 further increased persistence of tumor dissemination and ascites fluid accumulation enhancing peritoneal metastasis.
Summary sentence
Inactivation of TRP53, PTEN, and RB1 initiates ovarian cancer from the ovarian surface epithelium. Additional ablation of CDH1 further increased persistence of tumor dissemination.
The tripeptide thiol antioxidant glutathione (GSH) has multiple physiological functions. Female mice lacking the modifier subunit of glutamate cysteine ligase (GCLM), the rate-limiting enzyme in GSH synthesis, have decreased GSH concentrations, ovarian oxidative stress, preimplantation embryonic mortality, and accelerated age-related decline in ovarian follicles. We hypothesized that supplementation with thiol antioxidants, N-acetyl cysteine (NAC), or α-lipoic acid (ALA) will rescue this phenotype. Gclm-/- and Gclm+/+ females received 0 or 80 mM NAC in drinking water from postnatal day (PND) 21–30; follicle growth was induced with equine chorionic gonadotropin (eCG) on PND 27, followed by an ovulatory dose of human CG and mating with a wild type male on PND 29 and zygote harvest 20 h after hCG. N-acetyl cysteine supplementation failed to rescue the low rate of second pronucleus formation in zygotes from Gclm-/- versus Gclm+/+ females. In the second study, Gclm-/- and Gclm+/+ females received diet containing 0, 150, or 600 mg/kg ALA beginning at weaning and were mated with wild type males from 8 to 20 weeks of age. α-Lipoic acid failed to rescue the decreased offspring production of Gclm-/- females. However, 150 mg/kg diet ALA partially rescued the accelerated decline in primordial follicles, as well as the increased recruitment of follicles into the growing pool and the increased percentages of follicles with γ H2AX positive oocytes or granulosa cells of Gclm-/- females. We conclude that ovarian oxidative stress is the cause of accelerated primordial follicle decline, while GSH deficiency per se may be responsible for preimplantation embryonic mortality in Gclm-/- females.
Summary sentence
Supplementation with the antioxidant alpha-lipoic acid partially rescued accelerated age-related ovarian follicle depletion, but did not decrease offspring production, in glutathione-deficient Gclm null mice.
Nikola Sekulovski, Allison E. Whorton, Tomoki Tanaka, Yasushi Hirota, Mingxin Shi, James A. MacLean II, Julio Ricardo Loret de Mola, Kathleen Groesch, Paula Diaz-Sylvester, Teresa Wilson, Kanako Hayashi
Endometriosis is a common gynecological disease, which causes chronic pelvic pain and infertility in women of reproductive age. Due to limited efficacy of current treatment options, a critical need exists to develop new and effective treatments for endometriosis. Niclosamide is an efficacious and FDA-approved drug for the treatment of helminthosis in humans that has been used for decades. We have reported that niclosamide reduces growth and progression of endometriosis-like lesions via targeting STAT3 and NFkB signaling in a mouse model of endometriosis. To examine the effects of niclosamide on macrophage-induced inflammation in endometriosis, a total of 29 stage III–IV endometrioma samples were used to isolate human endometriotic stromal cells (hESCs). M1 or M2 macrophages were isolated and differentiated from fresh human peripheral blood samples. Then, hESCs were cultured in conditioned media (CM) from macrophages with/without niclosamide. Niclosamide dose dependently reduced cell viability and the activity of STAT3 and NFκB signaling in hESCs. While macrophage CM stimulated cell viability in hESCs, niclosamide inhibited this stimulation. Macrophage CM stimulated the secretion of proinflammatory cytokines and chemokines from hESCs. Most of these secreted factors were inhibited by niclosamide. These results indicate that niclosamide is able to reduce macrophage-induced cell viability and cytokine/chemokine secretion in hESCs by inhibiting inflammatory mechanisms via STAT3 and/or NFκB signaling.
Summary sentence
Niclosamide is able to inhibit the inflammatory mechanisms in primary endometriotic stromal cells stimulated by macrophages via STAT3 and NFκB signaling.
At any given time, the ovary contains a number of follicles in distinct growth stages, each with a set of identifying characteristics. Although follicle counting and staging using histological stains on paraffin-embedded ovary sections has been the gold standard in assessing ovarian health in fertility studies, the final counts rely on extrapolation factors that diverge greatly among studies. These methods also limit our ability to investigate spatial aspects of ovary organization. Recent advances in optical tissue clearing and lightsheet microscopy have permitted comprehensive analysis of intact tissues. In this study, we set out to determine the best clearing and imaging methods to generate 3D images of the complete adult mouse ovary that could be used for accurate assessments of ovarian follicles. We found that a combination of iDISCO and CUBIC was the best method to clear the immunostained ovary. Using lightsheet microscopy, we generated 3D images of the intact ovary and performed qualitative assessments of follicles at all stages of development. This study is an important step toward developing quantitative computational models that allow rapid and accurate assessments of growing and quiescent primordial follicles, and to investigate the integrity of extrinsic ovarian components including vascular and neuronal networks.
Summary Sentence
The combination of iDISCO and CUBIC tissue clearing methods allows in toto imaging of the ovarian follicle composition and extrinsic vascular and neuronal networks.
Implantation is restricted to a narrow window when the local endometrial microenvironment is supportive of the invading embryo. The ovarian steroid hormones estrogen (E) and progesterone (P) are principal regulators of uterine receptivity. Suppression of E-dependent proliferation of luminal epithelium (LE) by P is mandatory for embryo implantation. Here, we report that the balance of E receptor α (ERα) and P receptors (PR) activity controls HAND2 expression, a key transcription factor that determines the fate of the implanting embryo and thereby pregnancy outcome. As a model, we used wild-type mice as well as mice in which either both PR isoforms or the A-isoform was genetically ablated (PRKO and PRAKO, respectively). Detailed spatiotemporal analyses of PR, HAND2, and ERα expression at implantation site demonstrated co-expression of HAND2 and PR but not ERα. Furthermore, in hormonally treated ovariectomized WT, PRAKO and PRKO mice, E suppresses endometrial HAND2 expression. Adding P together with E partially rescues HAND2 expression in WT, but not PRAKO and PRKO animals. Therefore, infertility in PRAKO mice is at least in part associated with the loss of PR-A-regulated HAND2 expression.
Summary Sentence
The balance of ERα/PR activity is the key regulator of HAND2 expression, which determines the fate of embryo implantation and the outcome of pregnancy.
Thalia R. Segal, Peyvand Amini, Junye Wang, Gregory Peters, Yelenna Skomorovska-Prokvolit, Monica A. Mainigi, James M. Goldfarb, Sam Mesiano, Rachel Weinerman
Gonadotropin-releasing hormone agonists (GnRHa) are used as an alternative to human chorionic gonadotropin (hCG) to trigger ovulation and decrease the risk of ovarian hyperstimulation syndrome. GnRHa is less potent at inducing ovarian vascular endothelial growth factor (VEGF), but may also affect endometrial angiogenesis and early placental development. In this study, we explore the effect of superovulation on endometrial angiogenesis during critical periods of gestation in a mouse model. We assigned female mice to three groups: natural mating or mating following injection with equine chorionic gonadotropin and trigger with GnRHa or hCG trigger. Females were killed prior to implantation (E3.5), post-implantation (E7.5), and at midgestation (E10.5), and maternal serum, uterus, and ovaries were collected. During peri-implantation, endometrial Vegfr1 and Vegfr2 mRNA were significantly increased in the GnRHa trigger group (P < 0.02) relative to the hCG group. Vegfr1 is highly expressed in the endometrial lining and secretory glands immediately prior to implantation. At E7.5, the ectoplacental cone expression of Vegfa and its receptor, Vegfr2, was significantly higher in the hCG trigger group compared to the GnRHa group (P < 0.05). Soluble VEGFR1 and free VEGFA were much higher in the serum of mice exposed to the hCG trigger compared to GnRHa group. At midgestation, there was significantly more local Vegfa expression in the placenta of mice triggered with hCG. GnRHa and hCG triggers differentially disrupt the endometrial expression of key angiogenic factors during critical periods of mouse gestation. These results may have significant implications for placental development and neonatal outcomes following human in vitro fertilization.
Summary Sentence
The gonadotropin-releasing hormone agonists and human chorionic gonadotropin agents used to trigger ovulation before in vitro fertilization differentially modulate levels of key angiogenic factors during critical periods of implantation, trophoblast invasion, and placental development in a mouse model.
A strong sperm head–tail coupling apparatus (HTCA) is needed to ensure the integrity of spermatozoa during their fierce competition to fertilize the egg. A lot of HTCA-specific components have evolved to strengthen the attachment of the tail to the implantation fossa at the sperm head. Defects in HTCA formation lead to acephalic spermatozoa syndrome and pathologies of some male infertility. Recent studies have provided insights into the pathogenic molecular mechanisms of acephalic spermatozoa syndrome. Here, we summarize the proteins involved in sperm neck development and focus on their roles in the formation of HTCA. In addition, we discuss the fine structures of the sperm neck in different species from an evolutionary view, highlighting the potential conservative mechanism of HTCA formation.
Summary Sentence
The head–tail coupling apparatus, which strengthens the attachment of the tail to the sperm head, is essential for male fertility.
Intercellular bridges (ICBs) connecting germ cells are essential for spermatogenesis, and their deletion causes male infertility. However, the functions and component factors of ICBs are still unknown. We previously identified novel ICB-associated proteins by proteomics analysis using ICB enrichment. Here, we performed immunoprecipitation–proteomics analyses using antibodies specific to known ICB proteins MKLP1, RBM44, and ectoplasmic specialization-associated protein KIAA1210 and predicted protein complexes in the ICB cores. KIAA1210, its binding protein topoisomerase2B (TOP2B), and tight junction protein ZO1 were identified as novel ICB proteins. On the other hand, as well as KIAA1210 and TOP2B, MKLP1 and RBM44, but not TEX14, were localized at the XY body of spermatocytes, suggesting that there is a relationship between ICB proteins and meiotic chromosomes. Moreover, small RNAs interacted with an ICB protein complex that included KIAA1210, RBM44, and MKLP1. These results indicate dynamic movements of ICB proteins and suggest that ICB proteins could be involved not only in the communication between germ cells but also in their epigenetic regulation. Our results provide a novel perspective on the function of ICBs and could be helpful in revealing the biological function of the ICB.
Summary Sentence
Through the analyses of the dynamic movement of ICB-related proteins and their association with RNA, it was suggested that ICB may have other unknown functions to regulate spermatogenesis but not to connect germ cells.
Fertilization is one of the fundamental biological processes, but so far, we still do not have a full understanding of the underlying molecular mechanism. We have identified a human acrosome protein, LY6/PLAUR domain containing 4 (LYPD4), expressed specifically in human testes and sperm, and conserved within mammals. Mouse Lypd4, also specific to the testis and sperm, is essential for male fertility. LYPD4 protein first appeared in round spermatids during acrosome biogenesis and became part of acrosomes during spermatogenesis and in mature sperm. Lypd4 knockout mice are infertile with normal sperm number and motility. Mutant sperm, however, failed to reach oviduct during sperm migration inside the female reproductive tract, leading to fertilization failure and infertility. In addition, Lypd4 mutant sperms were unable to fertilize denuded egg via IVF (in vitro fertilization) but could fertilize eggs within intact Cumulus-Oocyte Complex, supporting an additional role in sperm-zona interaction. Out of more than five thousand spermatozoa proteins identified by mass spectrometry analysis, only a small subset of proteins (26 proteins) was changed in the absence of LYPD4, revealing a whole proteome picture of mutant sperm defective in sperm migration and sperm-zona binding. ADAM3, a key component of fertilization complex, as well as other sperm ADAM proteins are significantly reduced. We hence propose that LYPD4 plays an essential role in mammalian fertilization, and further investigation of its function and its interaction with other sperm membrane complexes may yield insights into human fertilization and novel strategy to improve IVF success.
Summary Sentence
Human LYPD4 protein is localized to sperm acrosome, and its mouse homolog is essential for sperm migration and sperm-zona binding.
Secretions of the endometrium are vital for peri-implantation growth and development of the sheep conceptus. Extracellular vesicles (EVs) are present in the uterine lumen, emanate from both the endometrial epithelia of the uterus and trophectoderm of the conceptus, and hypothesized to mediate communication between those cell types during pregnancy establishment in sheep. Size-exclusion chromatography and nanoparticle tracking analysis determined that total EV number in the uterine lumen increased from days 10 to 14 of the cycle but was lower on days 12 and 14 of pregnancy in sheep. Intrauterine infusions of interferon tau (IFNT) did not affect total EV number in the uterine lumen. Quantitative mass spectrometric analyses defined proteins and lipids in EVs isolated from the uterine lumen of day 14 cyclic and pregnant sheep. In vitro analyses found that EVs decreased ovine trophectoderm cell proliferation and increased IFNT production without effects on gene expression as determined by RNA-seq. Collective results support the idea EVs impact conceptus growth during pregnancy establishment via effects on trophectoderm cell growth.
Summary Sentence
EVs in the lumen of the ovine uterus decrease during early pregnancy, contain lipid and protein cargo, and modulate trophectoderm cell growth.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere