Colony-stimulating factor 2 (CSF2) functions in the reproductive tract to modulate the function of the preimplantation embryo. The β subunit of the CSF2 receptor (CSF2RB) is not expressed in the embryo, and signal transduction is therefore different than for myeloid cells where the receptor is composed of α (CSF2RA) and β subunits. Here, we produced embryos in which exons 5 and 6 of CSF2RA were disrupted using the CRISPR/Cas 9 system to test whether CSF2RA signaling was essential for actions of CSF2 in the bovine embryo. Wild-type and CSF2RA knockout embryos were treated with 10 ng/mL CSF2 or vehicle at day 5 of development. Blastocysts were harvested at day 8 to determine transcript abundance of 90 genes by real-time polymerase chain reaction (PCR). Responses in female blastocysts were examined separately from male blastocysts because actions of CSF2 are sex-dependent. For wild-type embryos, CSF2 altered expression of 10 genes in females and 20 in males. Only three genes were affected by CSF2 in a similar manner for both sexes. Disruption of CSF2RA prevented the effect of CSF2 on expression for 9 of 10 CSF2-regulated genes in females and 19 of 20 genes in males. The results confirm the importance of CSF2RA for regulation of gene expression by CSF2 in the blastocyst.
Summary sentence
Disruption of CSF2RA blocked most CSF2-induced changes in gene expression in the blastocyst, indicating that, despite the absence of the β subunit of the receptor, the preimplantation embryo uses CSF2RA for signal transduction.