BioOne.org will be down briefly for maintenance on 13 August 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Christopher P. Konrad, Julian D. Olden, David A. Lytle, Theodore S. Melis, John C. Schmidt, Erin N. Bray, Mary C. Freeman, Keith B. Gido, Nina P. Hemphill, Mark J. Kennard, Laura E. McMullen, Meryl C. Mims, Mark Pyron, Christopher T. Robinson, John G. Williams
Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.
Even though avian damage to sunflower (Helianthus annuus L.) is a worldwide economic issue, several of the current methods used to reduce sunflower damage were developed and tested in the Prairie Pothole Region of the United States. An intensive research program was conducted in that area because of the regionalized concentration of sunflower production and the severe incidences of blackbird (Icteridae) depredation. During the past 40 years, federal and university scientists tested chemical and physical frightening agents, aversive repellents, bird-resistant sunflowers, decoy crops, habitat management, population management, and cultural modifications in cropping. Some of these techniques have broad applicability and may be useful in depredation scenarios involving other bird species and crops. Population suppression is intuitively appealing, but it typically fails beyond local scales because of avian mobility, population dynamics, and public antipathy. Scare devices, repellents, habitat management, and decoy crops are more likely to meet the test of predictable efficacy and practicality.
Biodiversity is integral to almost all ecosystem processes, with some species playing key functional roles that are essential for maintaining the value of ecosystems to humans. However, many ecosystem services remain nonvalued, and decisionmakers rarely consider biodiversity in policy development, in part because the relationships between biodiversity and the provision of ecosystem services are not generally appreciated. To date, the majority of work in which the functional importance of biodiversity has been examined has been conducted in relatively species-poor systems. Focusing on forest and agroforest systems, we synthesize recent research on the role of biodiversity in the provision of ecosystem services and provide examples of biodiversity science that informs ecosystem management and policy. Finally, we highlight barriers to the transfer of knowledge from scientists to decisionmakers and suggest that scientists can be much more effective at informing policy and improving resource management by asking policy-relevant questions and providing timely and consistent information to decisionmakers and the public on the linkages among biodiversity, ecosystem services, and their value to people.
Large areas of public land are currently being permitted or evaluated for utility-scale solar energy development (USSED) in the southwestern United States, including areas with high biodiversity and protected species. However, peer-reviewed studies of the effects of USSED on wildlife are lacking. The potential effects of the construction and the eventual decommissioning of solar energy facilities include the direct mortality of wildlife; environmental impacts of fugitive dust and dust suppressants; destruction and modification of habitat, including the impacts of roads; and off-site impacts related to construction material acquisition, processing, and transportation. The potential effects of the operation and maintenance of the facilities include habitat fragmentation and barriers to gene flow, increased noise, electromagnetic field generation, microclimate alteration, pollution, water consumption, and fire. Facility design effects, the efficacy of site-selection criteria, and the cumulative effects of USSED on regional wildlife populations are unknown. Currently available peer-reviewed data are insufficient to allow a rigorous assessment of the impact of USSED on wildlife.
Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multicriteria optimization with Pareto optimality allows for model outputs to be compared to multiple system components simultaneously and improves three areas in which models are used for biological problems. In the study of optimal biological structures, Pareto optimality allows for the identification of multiple solutions possible for organism survival and reproduction, which thereby explains variability in optimal behavior. For model assessment, multicriteria optimization helps to illuminate and describe model deficiencies and uncertainties in model structure. In environmental management and decisionmaking, Pareto optimality enables a description of the trade-offs among multiple conflicting criteria considered in environmental management, which facilitates better-informed decisionmaking.
KEYWORDS: Convention on Biological Diversity, sanitary and phytosanitary agreement, World Health Organization, World Trade Organization, invasive species
Preventing the spread of nonnative invasive species is an international public good. Some categories of invasive species—such as diseases of humans and livestock—are addressed by international agreements that coordinate efforts to reduce their spread. In contrast, invasive species that primarily cause environmental impacts are managed almost exclusively at the national level. Control of environmental invaders is internationally undersupplied because the efforts of nations that do invest to prevent their spread are undercut by nations that do not. Addressing this problem will require international cooperation. We identify the international approach to controlling human diseases as a model that could provide institutions and mechanisms to map the spread of environmental invaders and assess the risks they impose. This would allow individual nations to manage potential vectors of invasion. Because such a system is unlikely to be implemented in the near future, we make recommendations for intermediate steps, including the widespread adoption of existing risk assessments and importation standards.
Scott A. Morrison, T. Scott Sillett, Cameron K. Ghalambor, John W. Fitzpatrick, David M. Graber, Victoria J. Bakker, Reed Bowman, Charles T. Collins, Paul W. Collins, Kathleen Semple Delaney, Daniel F. Doak, Walter D. Koenig, Lyndal Laughrin, Alan A. Lieberman, John M. Marzluff, Mark D. Reynolds, J. Michael Scott, Jerre Ann Stallcup, Winston Vickers, Walter M. Boyce
Biodiversity conservation in an era of global change and scarce funding benefits from approaches that simultaneously solve multiple problems. Here, we discuss conservation management of the island scrub-jay (Aphelocoma insularis), the only island-endemic passerine species in the continental United States, which is currently restricted to 250-square-kilometer Santa Cruz Island, California. Although the species is not listed as threatened by state or federal agencies, its viability is nonetheless threatened on multiple fronts. We discuss management actions that could reduce extinction risk, including vaccination, captive propagation, biosecurity measures, and establishing a second free-living population on a neighboring island. Establishing a second population on Santa Rosa Island may have the added benefit of accelerating the restoration and enhancing the resilience of that island's currently highly degraded ecosystem. The proactive management framework for island scrub-jays presented here illustrates how strategies for species protection, ecosystem restoration, and adaptation to and mitigation of climate change can converge into an integrated solution.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere