S.P. Indraratne, D. Kumaragamage, D. Goltz, R.S. Dharmakeerthi, F. Zvomuya
Canadian Journal of Soil Science 100 (2), 109-119, (20 December 2019) https://doi.org/10.1139/cjss-2019-0085
KEYWORDS: immobilization, labile pool, non-labile pool, Pore water, boreal forest soil
Metal-contaminated soils present a great threat to natural ecosystems and human health. Remediation studies focusing on metal-polluted soils with high organic matter (OM > 20%) are limited. This study evaluated the effectiveness of biochar, compost, diammonium phosphate (DAP), and iron oxides (Fe-O), in immobilizing metals from an OM-rich boreal forest soil contaminated with arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). A laboratory incubation study was conducted with soil amended with biochar (5% w w−1), compost (5% w w−1), DAP (0.2% w w−1), or Fe-O (0.2% w w−1), and a control (without amendment) for 6 months at field capacity moisture content. Metal concentrations were determined in pore water collected at 0, 2, 4, and 6 months after incubation. Soil was extracted sequentially for metals after the incubation period. Metal concentrations in pore water were significantly reduced by different amendments as follows: As by biochar and Fe-O, Cd by biochar, compost, and DAP, Cu by biochar, Pb by compost and DAP, and Zn by biochar and compost. Sequential extractions revealed biochar and (or) compost transferred Cd, Cu, Pb, and Zn from the labile pool to the non-labile pool confirming their effectiveness as amendments for remediation of metal-contaminated OM-rich boreal forest soil.