Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The molecular chaperone machinery contains multiple protein components that have 1 or more structural domains composed of tetratricopeptide repeat (TPR) motifs. Many other proteins of separate or unknown function also have TPR domains, so this motif is not exclusive to molecular chaperones. A general function of TPR domains is to bind other polypeptides, but this otherwise prosaic function has been exploited in an assortment of ways that link chaperones and other protein systems into cooperative networks. Among the best-characterized TPR proteins are several cochaperones that participate in assembly and regulation of steroid receptor complexes. Steroid receptors, members of the nuclear receptor subfamily, are hormone-dependent transcription factors that regulate many vertebrate pathways of homeostasis, growth, differentiation, reproduction, and pathology and, as such, have been of great interest to biologists and clinicians. Moreover, the steroid receptors are among the first recognized native clients for chaperones and have been widely studied models for complex chaperone interactions. To provide a coherent, representative minireview of TPR protein function, the scope of this article has been narrowed down primarily to functions of steroid receptor–associated TPR cochaperones.
Heat shock factor Hsf in nonvertebrate animals and homologous heat shock factor Hsf1 in vertebrate animals are key transcriptional regulators of the stress protein response. Hsf/Hsf1 is constitutively present in cells but is, typically, only active during periods during which cells are experiencing a physical or chemical proteotoxic stress. It has become increasingly clear that regulation of Hsf/Hsf1 activity occurs at multiple levels: the oligomeric status of Hsf/Hsf1, its DNA-binding ability, posttranslational modification, transcriptional competence, nuclear/ subnuclear localization, as well as its interactions with regulatory cofactors or other transcription factors all appear to be carefully controlled. This review emphasizes work reported over the past several years suggesting that regulation at several of these levels is mediated by repressive interactions of Hsp90-containing multichaperone complexes and/or individual chaperones and Hsf/Hsf1.
Heat shock proteins (Hsps) are constitutively expressed in cells and involved in protein folding, assembly, degradation, intracellular localization, etc, acting as molecular chaperones. However, their overexpression represents a ubiquitous molecular mechanism to cope with stress. Hsps are classified into families, and among them the Hsp70 family appears to be the most evolutionary preserved and distributed in animals. In this study, the expression of Hsp70 and the related messenger ribonucleic acid (mRNA) has been studied in Ostrea edulis after exposure to heat and heavy metals; moreover, levels of metallothioneins (MTs), another class of stress-induced proteins, have contemporaneously been assessed in the same animals. Thermal stress caused the expression of a 69-kDa inducible isoform in gills of O edulis but not in the digestive gland. Northern dot blot analysis confirmed that the transcription of Hsp69-mRNA occurs within 3 hours of stress recovery after oyster exposure at 32 and 35°C. Hsp69-mRNA transcripts were not present in the gills of animals exposed to 38°C after 3 hours of poststress recovery, but they were detected after 24 hours. The expression of the 69-kDa protein in O edulis exposed to 38°C was rather low or totally absent, suggesting that the biochemical machinery at the base of the heat shock response is compromised. Together with the expected increase in MT content, the oysters exposed to Cd showed a significant enhancement of Hsp70, although there was no clear appearance of Hsp69. Interestingly, the levels of MT were significantly increased in the tissues of individuals exposed to thermal stress. Unlike oysters, heat did not provoke the expression of inducible Hsp isoforms in Mytilus galloprovincialis, Tapes philippinarum, and Scapharca inaequivalvis, although it significantly enhanced the expression of constitutive proteins of the 70-kDa family. The expression of newly synthesized Hsp70 isoforms does not seem therefore a common feature in bivalves exposed to thermal stress.
Although heat shock proteins (Hsps) are primarily considered as being intracellular, this study identified the presence of Hsp72 in plasma from female Holstein-Friesian dairy cattle. Plasma samples were collected from the same animals at different ages and on different days after calving and accordingly divided into 5 age classes. The age classes were calves less than 235 days of age, young heifers between 235 and 305 days of age, older heifers between 305 and 560 days of age, cows early in lactation, and cows later in lactation. For a subsample of animals within each age class, replicate plasma samples were collected from 1 to 7 days apart to test whether the Hsp72 concentration levels are repeatable on this shorter timescale. Hsp72 was observed in plasma samples from animals of all 5 age classes. For animals with blood samples taken a few days apart, the repeatability (within age class) of the Hsp72 concentration was 0.52 ± 0.06. Age and days from calving significantly affected the Hsp72 concentration level. The highest Hsp72 level was observed in older heifers (305–560 days of age). The repeatability of Hsp72 concentrations across age classes within animal was 0.22 ± 0.06. High environmental sensitivity and negative genetic associations between production and health traits in this high-producing breed have been documented earlier. Hsp72 is believed to be strictly stress inducible, and the finding of Hsp72 in plasma indicates that even apparently healthy individuals may experience extrinsic or intrinsic stress (or both).
We report that in Jurkat T cells or freshly isolated T lymphocytes, physiological concentrations of high– molecular weight sulfated polysaccharides such as heparin, heparan sulfate, and dextran sulfate significantly increased the percentage of cell death induced by Fas IgM agonistic antibody. The phenomenon was caspase dependent and P53 independent and correlated with an increased accessibility of cell surface Fas receptors. We also observed that the Fas IgM agonistic antibody–dependent formation of sodium dodecyl sulfate (SDS)–resistant large structures containing Fas receptor was decreased in the presence of heparin-like agents. In contrast, the different agents had no effect when cell death was triggered by FasL, the natural ligand of Fas that does not generate SDS-resistant forms of Fas. Interestingly, the synergistic effect of heparin-like agents toward Fas IgM agonistic antibody–mediated cell death abolished Hsp27 antiapoptotic activity but did not alter much the protection generated by Bcl-2 expression.
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.
Induction of Hsp70 in the brain has been reported after intake of drugs of abuse like amphetamine and lysergic acid diethylamide. In this investigation, gene expression of Hsp70 and other heat shock genes in the rat brain was studied in response to morphine. Twenty milligrams per kilogram morphine intraperitoneally resulted in a marked induction of Hsp70 messenger RNA (mRNA) expression in the frontal cortex with a maximum increase of 13.2-fold after 2 hours. A moderate increase of Hsp27 mRNA expression (6.7-fold) could be observed after 4 hours, whereas mRNA expression of Hsp90 and of the constitutive Hsc70 did not exceed a mean factor of 1.8-fold during the 24 hours interval. The increase in Hsp70 mRNA was dose dependent, showing a significant elevation after doses ranging from 10 to 50 mg/kg morphine. In situ hybridization revealed enhanced Hsp70 mRNA expression mainly in cortical areas, in the hippocampus, in the paraventricular and supraoptic nuclei of the hypothalamus, in the locus coeruleus, as well in the pineal body. The double in situ hybridization technique revealed increased Hsp70 mRNA expression mainly in VGLUT1-positive neurons and to a lesser extent in olig1-positive oligodendroglia. Immunohistochemistry revealed a marked increase of Hsp70 protein in neuronal cells and blood vessels after 12 hours. In contrast to animal experiments, morphine did not increase Hsp70 mRNA expression in vitro in μ-opioid receptor (MOR1)–expressing human embryonic kidney 293 cells, suggesting no direct MOR1-mediated cellular effect. To exclude a body temperature–related morphine effect on Hsp70 mRNA expression, the temperature was recorded. Five to 20 mg/kg resulted in hyperthermia (maximum 40.6°), whereas a high dose (50 mg/kg) that produced the highest mRNA induction, showed a clear hypothermia (minimum 37.2°C). These findings argue against the possibility that Hsp70 induction by morphine is caused by its effect on body temperature. It may be speculated that increased expression of Hsp70 after morphine application protects brain structures against potentially hazardous effects of opiates.
Two genes encoding isoforms heat shock protein (Hsp) 90α and Hsp90β constitute the Hsp90 subfamily. In addition to their role in regulating mineralocorticoid and glucocorticoid receptors, these proteins have been associated with nitric oxide production. However, little is known regarding Hsp90 isoform expression and regulation in kidney. In this study we characterized the expression and localization of Hsp90 isoforms and evaluated the influence of low-sodium intake on their expression and distribution in kidney by using reverse transcription–polymerase chain reaction, Western blot, and immunohistochemistry techniques. We found that Hsp90α and Hsp90β were expressed abundantly in both the renal cortex and the medulla; however, Hsp90 isoform expression was higher in the medulla than in the cortex. Immunohistochemistry of Hsp90α and Hsp90β showed intense staining in the apical membrane of proximal and distal tubules. In the outer cortex these proteins were localized intracytosolically, whereas in the inner renal medulla they were restricted mainly to the basolateral membrane. Expression of Hsp90α and Hsp90β was upregulated in the renal cortex during sodium restriction. In addition, both proteins exhibited redistribution from the cytoplasm to the basolateral side in thick ascending limb cells when rats were fed with a low-salt diet. Our results showed that Hsp90α and Hsp90β were expressed abundantly in renal tissue. Expression and localization patterns under normal and salt-restricted intake were different between the cortex and the medulla, suggesting that these proteins may be involved in different processes along the nephron. Hsp90α and Hsp90β upregulation induced by a low-sodium diet together with redistribution in thick ascending limb cells suggests that Hsp90 plays a role in the modulation of sodium reabsorption under these circumstances.
Noise exposure may result in production of auto-antibodies against heat shock proteins (Hsps), which might be of significance in the pathogenesis or prognosis (or both) of auto-immune ear diseases. However, it is not known whether these antibodies are associated with noise-induced hearing loss (NIHL) in workers exposed to noise in occupational settings. Using immunoblotting with human recombinant Hsps, audiological assessment, and multivariate logistic regression models, we investigated the presence of antibodies against Hsp60 and Hsp70 and hearing levels, and analyzed their associations with NIHL in 399 workers exposed to noise between 75 and 115 dB. Our findings showed that the prevalence of positive anti-Hsp70 was significantly higher in the workers with slight and moderate high-frequency hearing loss than in normal workers (P < 0.05). Furthermore, the prevalence of positive anti-Hsp60 in workers with moderate low-frequency NIHL was significantly higher than in the normal (P < 0.01). The levels of anti-Hsp70 and anti-Hsp60 seemed correlated, and the level of anti-Hsp70 better predicted the level of anti-Hsp60. An elevated plasma level of anti-Hsp70 was associated with a nonsignificantly increased risk of high-frequency NIHL (adjusted OR = 1.45; 95% CI = 0.89–2.36) and an elevated plasma level of anti-Hsp60 was associated with a nonsignificantly increased risk of the low-frequency NIHL (adjusted OR = 2.25; 95% CI = 0.85–5.96). These results suggest that the production of anti-Hsp60 and anti-Hsp70 may play a role in the pathogenesis of NIHL, and that anti-Hsps may be a risk factor. The precise mechanisms for the elevation of antibodies against Hsps caused by noise exposure and their possible role in the development of NIHL warrant further investigations.
Heat shock transcription factor (Hsf)–1 and Hsf2 are members of the heat shock factor (HSF) protein family involved in heat shock protein (hsp) gene regulation, a regulation that is critical for the ability of cells to survive exposure to stress conditions. Although the role of Hsf1 in binding and activating transcription of hsp gene promoters in response to cell stress is well established, how Hsf2 enhances stress-induced hsp expression is not understood. To gain an insight into the critical conserved features of the regulation and function of Hsf2, we have identified and characterized the Hsf2 protein from Xenopus laevis. We found that, similar to its human counterpart, Xenopus Hsf2 is sumoylated at lysine 82 and that, as it does in human Hsf2, the modification event of the small ubiquitin–related modifier 1 functions to increase the deoxyribonucleic acid–binding activity of this transcription factor in Xenopus. These results indicate that sumoylation is an evolutionarily conserved modification of Hsf2 proteins, supporting the position of this modification as a critical regulator of Hsf2 function.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere