Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Wind directly influences the spread of vector-borne plant pathogens by driving the passive dispersal of vectors to potentially new areas. Here, we evaluated the effect of wind speed and direction on the dispersal of the Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae), the vector of the bacteria causing huanglongbing (HLB), a lethal disease of citrus. The effect of different wind speeds on short or long-distance dispersal of ACP was investigated using a high-speed wind tunnel under laboratory conditions. The effect of wind direction on ACP dispersal under field conditions was evaluated using custom-made wind vane-style traps. In wind tunnel assays, ACP remained on plants until wind treatments reached ≥48 km/h when psyllids were mostly dislodged from plants and moved by the wind. For a short-distance, wind-driven movement (movement by the wind from one plant to another), the effect of wind speed was not significant at any of the wind speed treatments tested. Wind vane traps placed in a Florida citrus grove captured significantly more ACP on the windward side, suggesting that ACP were moved with the wind. The number of ACP found on the windward side of traps was significantly higher from May to August. These results indicate that ACP is likely to disperse with prevailing wind direction and that settled ACP may become dislodged and moved at random by high wind speeds occurring in areas of significant citrus production (southern California, Florida, or Texas).
The salinization of freshwater habitats from winter road salt application is a growing concern. Understanding how taxa exposed to road salt run-off respond to this salinity exposure across life history transitions will be important for predicting the impacts of increasing salinity. We show that Leucorrhinia intacta Hagen, 1861 (Odonata: Libellulidae) dragonflies are robust to environmentally relevant levels of salt pollution across intrinsically stressful life history transitions (hatching, growth, and metamorphosis). Additionally, we observed no carry-over effects into adult dragonfly morphology. However, in a multiple-stressor setting, we see negative interactive effects of warming and salinity on activity, and we found that chronically warmed dragonfly larvae consumed fewer mosquitoes. Despite showing relatively high tolerance to salinity individually, we expect that decreased dragonfly performance in multiple-stressor environments could limit dragonflies' contribution to ecosystem services such as mosquito pest control in urban freshwater environments.
Aphids are the most prolific vectors of plant viruses resulting in significant yield losses to crops worldwide. Potato virus Y (PVY) is transmitted in a non-persistent manner by 65 species of aphids.With the increasing acreage of hemp (Cannabis sativa L.) (Rosales: Cannabaceae) in the United States, we were interested to know if the cannabis aphid (Phorodon cannabis Passerini) (Hemiptera: Aphididae) is a potential vector of PVY. Here, we conduct transmission assays and utilize the electrical penetration graph (EPG) technique to determine whether cannabis aphids can transmit PVY to hemp (host) and potato (non-host) (Solanum tuberosum L.) (Solanales: Solanaceace). We show for the first time that the cannabis aphid is an efficient vector of PVY to both hemp (96% transmission rate) and potato (91%) using cohorts of aphids. In contrast, individual aphids transmitted the virus more efficiently to hemp (63%) compared to potato (19%). During the initial 15 min of EPG recordings, aphids demonstrated lower number and time spent performing intracellular punctures on potato compared to hemp, which may in part explain low virus transmission to potato using individual aphids. During the entire 8-hour recording, viruliferous aphids spent less time ingesting phloem compared to non-viruliferous aphids on hemp. This reduced host acceptance could potentially cause viruliferous aphids to disperse thereby increasing virus transmission. Overall, our study shows that cannabis aphid is an efficient vector of PVY, and that virus infection and host plant suitability affect feeding behaviors of the cannabis aphid in ways which may increase virus transmission.
The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), is an invasive sorghum pest that has threatened over 90% of North American sorghum production. Resident parasitoids, coccinellids, syrphids, and lacewings prey on this aphid. Our objective was to compare and estimate parasitoid and predator suppression of sugarcane aphids placed on resistant and susceptible hybrids in a field setting using natural enemy exclusion cages. During 2018 and 2019 along the Texas Gulf Coast and Central Oklahoma, three natural enemy exclusion treatments—no exclusion (full access for parasitoids and predators), partial exclusion (access limited to parasitoids), and complete exclusion (excludes parasitoids and predators)—were used. The parasitoid Aphelinus nigritus Howard (Hymenoptera: Aphelinidae) accounted for 90% of recovered natural enemies. In 2018, aphid suppression attributable to A. nigritus was ca. 95% on the resistant hybrids and 80% on the susceptible hybrids when comparing aphid counts from complete and partial exclusion treatments, while few predators were observed. In 2019, aphid suppression was attributed to a combination of predation and parasitism. Relatively more predators were recorded at both sites, accounting for 14% to 33% of specimens recovered in the no exclusion treatment. Aphid suppression attributed to predators and parasitoids ranged from 85% on aphid-resistant hybrids and 27% on susceptible hybrids in south Texas and >95% on both hybrids in Oklahoma when comparing aphid abundance in the complete and no exclusion treatments. Parasitism and predation contributed to aphid regulation on both hybrids, which may accrue multiple benefits leading to a more resilient sugarcane aphid management system.
Aggressive bark beetles colonize and kill healthy conifers through pheromone-mediated mass aggregation. In several species, the focal point of aggregation moves progressively from mass-attacked ‘focus trees’ to adjacent, unattacked ‘recipient trees’, resulting in infestation growth. This process, termed ‘switching’, is hypothesized to be mediated in whole or in part by antiaggregation pheromones released by beetles as colonization intensifies on a focus tree. We tested this hypothesis with the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae), by using a windvane apparatus that maintained an unbaited, black, cylindrical trap (surrogate for a recipient tree) continuously 4 m downwind from an identical trap baited with synthetic aggregation attractant (surrogate for a focus tree). In two of three replicated trials, addition of pheromone components with antiaggregation activity, endo-brevicomin or verbenone, to the upwind trap caused a significant but small (<15%) increase in the proportion of beetles caught in the downwind trap. In one of two trials with endo-brevicomin, this shift was associated with a significant reduction in catches in the downwind trap and an overall reduction in catches of beetles by the trap pair. This suggests that an inhibitor-induced increase in landings on the recipient relative to the focus tree may be countered by the radial effects of the inhibitor, which at sufficiently high release may reduce responses to both the focus and recipient tree. We discuss spatial factors that might govern the role of antiaggregation pheromones in stimulating infestation growth as well as additional factors that likely govern switching behavior.
Seasonal dynamics of diversity patterns are a key component to understand when assessing ecological communities across temporal scales given that long-term trends in diversity are often a product of the intricate dynamisms that occur at shorter temporal scales. However, seasonal trends in diversity are usually dependent on local-scale conditions, such as habitat types or the demographic characteristics of a given fauna, thus requiring better data coverage from consistent local-scale sampling. Furthermore, the assessment of seasonal dynamics in the context of functional diversity derived from trait-based data is often lacking in many important taxa such as insects. In this study, I quantify and describe the diversity of a Floridian subtropical aboveground ant community from monthly sampling across seasons using both contemporary taxonomic diversity metrics and functional diversity metrics. Results show differences in the timing of peaks across different diversity metrics. Species richness and abundances peak in months leading up to wet seasons while functional richness and divergence peak near the end of the wet season. This asynchrony is likely a result of species-specific differences in natural histories and demographic dynamics. While clear temporal dynamics are observed across diversity metrics, differences between wet or dry seasons were lacking for all metrics except functional richness. Fine-scale sampling data of seasonal trends in insect communities compiled from studies like this will be essential tools for future assessments and predictions of insect biodiversity.
A comparative study on forests and grasslands in three ecoregions (Humid Chaco, Espinal, and Paranaense) was conducted in two protected areas in northeastern Argentina: Iberá National Park and Mburucuyá National Park. The effects of habitat heterogeneity (vegetation cover) on terrestrial ant (Formicidae) assemblages were analyzed and compared. The habitat heterogeneity hypothesis—which predicts that when environmental structural complexity increases, the species richness will also increase—was tested. Two sites were selected in each ecoregion. A forest and a grassland were surveyed in each site, using unbaited pitfall traps from October 2013 to February 2014. Overall, 5,465 ants belonging to 37 species were collected, 32 of which were present in forests and 26 in grasslands. Solenopsis invicta Buren (Hymenoptera: Formicidae) and Pheidole radoszkowskii Mayr (Hymenoptera: Formicidae) were the most abundant species. Formicidae assemblages were compared in terms of abundance, species richness, and diversity between habitats and ecoregions. The results of this study support the habitat heterogeneity hypothesis, since we found a higher diversity of ants in more structured habitats (i.e., forest) in the three ecoregions analyzed. Also, the ant assemblages differed both between habitats and between ecoregions. Our findings provide the first assessment of terrestrial ant assemblages in natural habitats of the three ecoregions in Corrientes Province, Argentina.
Land use changes from native vegetation to agriculture, livestock grazing, and urban development are among the main problems related to biodiversity loss worldwide. In this paper we evaluate how land use changes (eucalypt plantation and pasture) affect the richness and assemblage of wasps (Braconidae, Ichneumonidae, Pompilidae, and Vespidae), in comparison with nearby areas with native vegetation in the Cerrado. Specimens were collected at six points, with two Malaise traps at each location. The collections were performed monthly for 10 d, for 12 mo. A total of 773 hymenopterans of the selected groups were collected, representing 253 species or morphospecies. Richness of the families Ichneumonidae and Pompilidae between the areas did not present significant differences. For the families Braconidae and Vespidae, the richness was greater in the eucalypt plantation and pasture areas compared to the native area. Species composition in the native habitat was different from either of the managed habitats in the studied environment. Furthermore, the composition of wasps in native areas varied less throughout the sampling campaigns when compared with the pasture and eucalyptus sites. In native areas, 85 exclusive morphospecies were found. Thus, changes in land use may cause changes in the composition of wasp species, since areas with native vegetation presented more heterogeneous and stable environments than the other land uses. The maintenance of native areas, even if close to planted forest and/or pasture areas, could be the best way to combine forest productivity with biodiversity conservation.
ENVIRONMENTAL IMPACTS OF PROPOSED MANAGEMENT OPTIONS
Neonicotinoid insecticides are the most commonly used insecticide in the world and can have significant sub-lethal impacts on beneficial insects, including bumblebees, which are important pollinators of agricultural crops and wildflowers. This has led to bans on neonicotinoid use in the EU and has resulted in repeated calls for the agrochemical regulatory process to be modified. For example, there is increasing concern about 1) the underrepresentation of wild bees, such as bumblebees, in the regulatory process, and 2) the failure to determine how agrochemicals, such as neonicotinoids, interact with other commonly occurring environmental stressors, such as parasites. Here, we modify an OECD approved lethal dose (LD50) experimental design and coexpose bumblebees (Bombus terrestris) to the neonicotinoid thiamethoxam and the highly prevalent trypanosome parasite Crithidia bombi, in a fully crossed design. We found no difference in the LD50 of thiamethoxam on bumblebees that had or had not been inoculated with the parasite (Crithidia bombi). Furthermore, thiamethoxam dosage did not appear to influence the parasite intensity of surviving bumblebees, and there was no effect of either parasite or insecticide on sucrose consumption. The methodology used demonstrates how existing ring-tested experimental designs can be effectively modified to include other environmental stressors such as parasites. Moving forward, the regulatory process should implement methodologies that assess the interactions between agrochemicals and parasites on non-Apis bees and, in cases when this is not practical, should implement post-regulatory monitoring to better understand the real-world consequences of agrochemical use.
M. Ángel-Restrepo, P. P. Parra, S. Ochoa-Ascencio, S. Fernández-Pavía, G. Vázquez-Marrufo, A. Equihua-Martínez, A. F. Barrientos-Priego, R. C. Ploetz, J. L. Konkol, J. R. Saucedo-Carabez, R. Gazis
Most beetle–fungus symbioses do not represent a threat to agricultural and natural ecosystems; however, a few beetles are able to inoculate healthy hosts with disease-causing fungal symbionts. Here, we report the putative nutritional symbionts associated with five native species of ambrosia beetles colonizing commercial avocado trees in four locations in Michoacán. Knowing which beetles are present in the commercial orchards and the surrounding areas, as well as their fungal associates, is imperative for developing a realistic risk assessment and an effective monitoring system that allows for timely management actions. Phylogenetic analysis revealed five potentially new, previously undescribed species of Raffaelea, and three known species (R. arxi, R. brunnea, R. fusca). The genus Raffaelea was recovered from all the beetle species and across the different locations. Raffaelea lauricola (RL), which causes a deadly vascular fungal disease known as laurel wilt (LW) in Lauraceae species, including avocado, was not recovered. This study points to the imminent danger of native ambrosia beetles spreading RL if the pathogen is introduced to Mexico's avocado orchards or natural areas given that these beetles are associated with Raffaelea species and that lateral transfer of RL among ambrosia beetles in Florida suggests that the likelihood of this phenomenon increases when partners are phylogenetically close. Therefore, this study provides important information about the potential vectors of RL in Mexico and other avocado producing regions. Confirming beetle–fungal identities in these areas is especially important given the serious threat laurel wilt disease represents to the avocado industry in Mexico.
Silflower (Silphium integrifolium (Michaux)) is a native North American relative of sunflower that is undergoing domestication as a perennial oilseed crop. As silflower incurs pest damage from multiple insect species, it is necessary to screen genotypes for their effect on insect performance such that more pest tolerant/resistant accessions can be incorporated into future silflower breeding programs. We present a bioassay protocol for silflower using the generalist herbivore fall armyworm (Spodoptera frugiperda (J. E. Smith)). In this study, fall armyworm larvae were placed on leaf and flower tissue from eleven silflower genotypes, one cup plant (Silphium perfoliatum (L.) (Asterales: Asteraceae)) genotype, and an inbred sunflower line (Helianthus annuus (L.) (Asterales: Asteraceae), HA89). Caterpillar weight gained during a 4-d feeding period significantly differed on leaf and floral tissue from different silflower genotypes, between the Silphium species (silflower and cup plant), and between Silphium genotypes and annual sunflower. Two wild silflower genotypes produced lower larval weight gain on both the floral and leaf tissue than all other genotypes, suggesting these genotypes have either lower nutrition or greater resistance to fall armyworm. However, nonsignificant correlations between larval growth on floral versus leaf tissue across all plant species tested and among all silflower accessions suggest insect performances on these tissue types in silflower are independent. Along with identifying germplasm of interest for silflower breeding programs, we established an easily replicable bioassay protocol using fall armyworm on silflower floral and leaf tissues.
Louisiana rice is attacked by a complex of lepidopteran stem borers that injure the vegetative and reproductive stages of rice, reducing tillering and grain output. Currently, insecticidal seed treatments are used in Louisiana as a preemptive means to control stem borers in rice. Our objective was to better understand the spatial distribution of stem borers in Louisiana rice fields. Thirteen nontreated commercial rice fields in Louisiana were mapped using GPS software and surveyed for stem borer damage in 2017 and 2018. Damage was recorded by counting the number of blank panicles (whiteheads) within quadrats located at different areas in each field. An ANOVA, spatial interpolation, hotspot analysis, and negative binomial regression were used to determine where stem borer injury was concentrated and whether the distribution of these pests was influenced by rice stand count, field composition, and site location. The results show that stem borers are typically aggregated along field edges, with population density decreasing toward the center of rice fields. Stem borer damage was 4.2- and 3.9-fold greater along field edges than in field centers in 2017 and 2018, respectively. Hotspot spatial analysis revealed 41.7 and 52.1% of low-density clusters occurred at or near field centers, respectively. Negative binomial regression revealed stem borer injury declines with increasing distance from field edges, with regional differences in infestation levels. This suggests stem borer control efforts could be spatially targeted to improve the efficiency of pest management.
Serhan Mermer, Gabriella Tait, Ferdinand Pfab, Enrico Mirandola, Aleksandar Bozaric, Canessa D. Thomas, Maxwell Moeller, Katherine G. Oppenheimer, Lan Xue, Lu Wang, Vaughn M. Walton
Drosophila suzukii (Matsumura), spotted-wing drosophila, is a major pest in small fruit crops including highbush blueberry. Controlling D. suzukii is challenging and chemical control is the main method to manage D. suzukii populations. Growers have expressed interest in using micro-sprinklers as an alternative method to apply insecticides. The current study aimed to evaluate if insecticide applications using micro-sprinklers can be used as an alternative method to protect the fruit from D. suzukii egg-laying. Modeling was used as an additional tool to parameterize the relative insecticide efficacy on oviposition. Field measurements of different treatments were conducted over periods of eleven days on commercial-standard highbush blueberry. Cyantraniliprole and spinetoram were applied using both a micro-sprinkler and a backpack sprayer. Treatments of Chromobacterium subtsugae and zeta-cypermethrin were only applied using a backpack sprayer. Both cyantraniliprole and spinetoram treatments resulted in moderate suppression of D. suzukii egg-laying. No statistical significance was found between micro-sprinkler and backpack sprayer applications for these two insecticides. Zeta-cypermethrin treatments using a backpack sprayer resulted in the most significant suppression of D. suzukii egg-laying over eleven days, while C. subtsugae was less effective at preventing D. suzukii egg-laying. Modeling simulations estimate the impact of the control methods on D. suzukii populations dynamics and simulation outputs indicated that backpack sprayers reduced D. suzukii populations at more pronounced levels compared to micro-sprinkler applications. The present study indicates that there is an underlying value of micro-sprinkler systems as an alternative and rapid spray application technique to help suppress D. suzukii pest populations during high-pressure periods in highbush blueberry production.
The Neotropical brown stink bug, Euschistus heros (F.), and the soybean looper, Chrysodeixis includens (Walker), are key pests of soybean in South America. Low susceptibility to pyrethroids has been reported for both species in Brazil. Here, we evaluate the addition of synergistic compounds piperonyl butoxide (PBO) and diethyl maleate (DEM) to manage E. heros and C. includens with resistance to λ-cyhalothrin and bifenthrin. The LD50 of technical grade and commercial products containing λ-cyhalothrin and bifenthrin decreased against field-collected E. heros exposed to PBO and DEM relative to unexposed insects; synergistic ratios up to 4.75-fold. The mortality also increased when E. heros were exposed to commercial formulations containing λ-cyhalothrin (from 4 to 44%) and bifenthrin (from 44 to 88%) in the presence of synergists. There was also a higher susceptibility of field-collected C. includens to technical grade λ-cyhalothrin when PBO was used; synergistic ratio of 5.50-fold. High lethally of technical grade λ-cyhalothrin was also verified in the presence of PBO, with mortality increasing from 6 to 57%. Our findings indicate the potential utility of synergists in reversing the resistance to λ-cyhalothrin and bifenthrin in E. heros and C. includens and suggest a significant role of metabolic mechanisms underlying the detoxification of both pyrethroids.
California pistachios are threatened by several stink bug species (Hemiptera: Pentatomidae), including the native Thyanta pallidovirens (Stål) and Chlorochroa uhleri (Stål), as well as the invasive Nezara viridula (L.). In pistachio, control tactics often target specific life stages, which makes knowledge about life histories fundamental to successful IPM programs. For that purpose, life history parameters of these stink bug species were assessed. Nymphal development and survivorship at seven constant temperatures, upper and lower development thresholds, thermal constants, adult longevity and fecundity, and life table parameters were evaluated. No species completed development at 15°C or 35°C. For N. viridula, egg to adult development was fastest at 30°C, whereas for T. pallidovirens there was no significant difference between 27.5 and 30°C and C. uhleri development was similar between 25 and 30°C. Egg to adult survival was highest at 22.5°C and 27.5°C. The thermal requirements as degree-days (DD) to complete immature development were estimated to be 714.3, 370.4, and 434.8 for C. uhleri, T. pallidovirens, and N. viridula, respectively. For C. uhleri, life table calculations produced a value of 56.7 d for mean generation time (To), 24.89 for net reproductive rate (Ro) and 0.057 for the intrinsic rate of increase (r). Thyanta pallidovirens had a To of 39.9 d, a Ro of 81.10 and a r of 0.11. The results are discussed with respect to the improvement of IPM in California pistachios, and the information presented may contribute to the control of these pest species in other ecosystems.
Seasonal temperatures select for eclosion timing of temperate insects and their parasitoids. In western North America, the fruit fly Rhagoletis zephyria Snow (Diptera: Tephritidae) is parasitized by the hymenopterous wasps Utetes lectoides (Gahan), an egg parasite, and Opius downesi Gahan, a larval parasite (both Braconidae). Eclosion of wasps should be timed with the presence of susceptible fly stages, but reports indicate U. lectoides ecloses in the absence of flies under no-chill conditions. Based on this, we tested the hypotheses that chill durations and no-chill temperatures both differentially regulate eclosion times of R. zephyria and its parasitic wasps. When fly puparia were chilled at ∼3°C for 130–180 d, U. lectoides and O. downesi always eclosed on average later than flies. However, after 180-d chill, flies eclosed on average earlier than after 130- and 150-d chill, whereas eclosion times of U. lectoides and O. downesi were less or not affected by chill duration. When fly puparia were exposed to 20–22°C (no chill), U. lectoides eclosed before flies, with 88.9% of U. lectoides versus only 0.61% of flies eclosing. Taken together, findings show that eclosion times of flies are more sensitive to changes in chill duration than those of wasps. Flies are less sensitive than wasps to no-chill in that most flies do not respond by eclosing after no-chill while most wasps do. Our results suggest that shorter winters and longer summers due to climate change could cause mismatches in eclosion times of flies and wasps, with potentially significant evolutionary consequences.
Laboratory and greenhouse studies were conducted with the Neotropical brown stink bug, Euschistus heros (F.), to evaluate and compare adult damage at two infestation levels (2 and 4 adults/plant) and feeding behavior on seeds of three resistant soybean cultivars bearing the Block technology (‘BRS 1003 IPRO', ‘BRS 543 RR’, and ‘BRS 391’) compared to a susceptible cultivar (‘BRS 5601 RR’). No difference in number or weight of damaged seeds (as percentages) was found among the cultivars at either infestation level. Differences were only observed between infestation levels within cultivar; higher values were reported with 4 adults/plant, except for ‘BRS 543 RR’. At 2 adults/plant, total seed area damaged (mm2) and percentage of seed area damaged were significantly lower only on ‘BRS 1003 IPRO’; significant differences among cultivars were found in damage to internal but not external seed surfaces. At 4 adults/plant, all Block cultivars differed from ‘BRS 5601 RR’ in overall seed damage, and greater percent damage occurred on both seed surfaces on ‘BRS 5601 RR’. Electropenetrography (EPG) demonstrated that adults reached and fed in the seeds of all soybean cultivars. However, the feeding event duration in seeds of Block cultivars was much shorter than on ‘BRS 5601 RR’, which likely explains differences between internal and external seed damage. Furthermore, the total duration of feeding activities on seeds of Block cultivars was ca. 4–6 times shorter than on the susceptible cultivar; these two EPG feeding variables account for the lower seed damage observed for the Block cultivars. These cultivars represent an important new strategy for pest control on soybean.
Polyphagous insects are characterized by a broad diet comprising plant species from different taxonomic groups. Within these insects, migratory species are of particular interest, given that they encounter unpredictable environments, with abrupt spatial and temporal changes in plant availability and density. Aster leafhoppers (Hemiptera: Cicadellidae: Macrosteles quadrilineatus Forbes) arrive in the Canadian Prairies in spring and early summer and are the main vector of a prokaryotic plant pathogen known as Aster Yellows Phytoplasma (AYp) (Candidatus Phytoplasma asteris). Host choice selection behavior of Aster leafhoppers was evaluated through two-choice bioassays, using domesticated and wild plants species commonly found in the Canadian Prairies. Leaf tissues from these plants were collected and stained to quantify the number of stylet sheaths and eggs. To assess possible effects due to insect infection, two-choice bioassays were repeated using leafhoppers infected with AYp and a subset of plant species. When two domesticated or wild plant species were presented together, similar numbers of uninfected Aster leafhoppers were observed on both plant species in most combinations. In domesticated–wild plant bioassays, uninfected Aster leafhoppers preferred to settle on the domesticated species. There was little to no association between settling preferences and stylet sheath and egg counts. These findings provide a better understanding of AY epidemiology and suggest that after domesticated species germination, leafhoppers could move from nearby wild plants into the preferred cereals (Poales: Poaceae) to settle on them, influencing the risk of AYp infection in some of these species.
Since 2000, wild black cherry (Prunus serotina Ehrh.) has produced erratic seed crops, especially in the Allegheny National Forest where poor seed production has been implicated in difficulties with black cherry regeneration in forest stands. Given that black cherry is insect pollinated and unable to produce viable seed from self-pollination, a reduction in seed crops could be due to a pollination deficit; however, its key pollinators are unknown. Identifying the pollinators and factors that influence pollinator abundance and fidelity is critical for supporting and enhancing seed production for this valuable timber species. Over a two-year period in developed, semideveloped, and forested areas in Pennsylvania, we identified the potential pollinators of black cherry and examined how their abundance, along with several other abiotic and biotic factors, influenced viable seed production. We found that andrenid (Andrenidae: Hymenoptera) bees are likely the most important pollinators. The proportion of viable seeds increased as the number of andrenids increased, and these ground nesting bees were most abundant on forest edges, highlighting this habitat's potential to support pollination services. Andrenids carried an average of 347-fold more black cherry pollen than flies and 18-fold more than halictid (Halictidae: Hymenoptera) bees. We did not find a significant relationship between the abundance of any other taxa besides andrenids and viable seed production. Black cherry flowers also provide resources for natural enemies such as the economically important parasitoid of Popillia japonica Newman (Scarabaeidae: Coleoptera), Tiphia vernalis Rohwer (Tiphiidae: Hymenoptera), which was observed feeding on black cherry nectar in this study.
There is conflicting research regarding how conspecific plant density can affect pollinator visitation, with some studies indicating dense flower patches will receive more visitors and other studies demonstrating the opposite. This study investigated the effects of conspecific density on pollinator visitation in a restored prairie. Three plant species, Penstemon digitalis (Nutt. ex Sims) (Lamiales: Plantaginaceae), Monarda fistulosa (L.) (Lamiales: Lamiaceae), and Eryngium yuccifolium (Michx.) (Apiales: Apiaceae), were observed, with visiting pollinators recorded. Conspecific density did not have an effect on total pollinator visitation rates for any of the focal plant species. However, different groups of pollinators varied in their responses to flower density, notably with larger Bombus spp. tending to visit dense flowering patches more than did other groups of bees. This suggests that plant density may impact certain pollinators differently than others. These results also indicate a possible mechanism through which multiple pollinator species can coexist while only one flowering resource is available, with the foraging behavior of smaller bees potentially allowing them to avoid competition with larger, social bees. Furthermore, a comparison of seed weight demonstrated that E. yuccifolium plants tended to have larger seed sets in isolated individuals, suggesting that flowers in large patches may be pollinated less effectively and are competing for, rather than facilitating, pollinator visits.
Over the past century, habitat loss from agricultural intensification has contributed to pollinator decline. One way to mitigate the harmful effects of agricultural intensification is through the re-introduction of native flowering plants as border strips that provide supplemental floral and nesting resources to pollinators. However, border crop species vary in bloom period and flower densities, and are thus likely to attract different suites of pollinator species. Resulting differences in pollinator community composition are likely to affect their ability to provide pollination services to adjacent crop habitat. To address these issues, we implemented a two-year study on the impact of different flowering border crops on pollinator abundance, richness, and community composition. We also examined which crop features (bloom duration, number of flowers, floral area) were most likely to affect pollinator densities. We found that native flowering plant border crops of diverse prairie mix and monocultures of silflower (Silphium integrifolium Michx.) and cup plant (Silphium perfoliatum L.) attracted the highest abundance and species richness of bees and pollinator groups combined, while alfalfa (Medicago sativa L.) attracted the highest lepidopteran abundance and species richness. We also found a significant, positive relationship between pollinator abundance and floral resource amount and bloom duration. These findings offer valuable insight into the impacts of different land management strategies on different pollinator groups, and thus provide landowners with management options for attracting specific pollinator groups and species.
Numerous lepidopteran adults frequently pick up plant pollen when feeding. Identifying plant species visited by Mamestra brassicae moths could further strengthen our knowledge of their migratory trajectory and the interactions of M. brassicae moths with these plant species. Here, with morphological analysis and DNA metabarcoding of pollen carried by the moths, we determined these plant species visited by M. brassicae during 2015–2018. Pollen grains removed from M. brassicae moths were identified from 25 species (18 were identified to genus), representing at least 19 families, including Pinaceae, Oleaceae, Rosaceae, and Asteraceae, but mainly belonging to Angiospermae, Dicotyledoneae. There were noticeable interannual differences (maximum value: 35.31% in 2018) and seasonal differences (maximum value: 33.28% in April–(including May)–June) in the frequency of M. brassicae moths with adhering pollen, but no noticeable difference based on sex. Meanwhile, we also found pollen from some species such as Citrus sinensis (Rutales: Rutaceae) and Melia azedarach (Rutales: Meliaceae) that grow in southern China, indicating that M. brassicae moths might migrate northward in spring. Our results demonstrate that the M. brassicae moth visits a variety of plant species during migration, and these findings promote our understanding of the interaction between moths and these plant species.
The survival of insects that are dormant in winter may either increase or decrease as a consequence of elevated winter temperatures under climate change. Warming can be deleterious when metabolism of the overwintering life stages increases to the point that energy reserves are exhausted before postoverwintering reemergence. We examined experimentally how overwintering survival of swallow bugs (Hemiptera: Cimicidae: Cimex vicarius Horvath), an ectoparasite primarily of cliff swallows (Passeriformes: Hirundinidae: Petrochelidon pyrrhonota Vieillot), was affected by a 3°C rise in mean daily temperature for populations in Oklahoma, Nebraska, and North Dakota. Adult and nymphal swallow bugs exposed to elevated temperature had an average reduction of approximately 31% in overwintering survival (from July/August to April/May), relative to controls exposed to current region-specific ambient-like conditions. Adult males in both groups survived less well in Nebraska and North Dakota than adult males in Oklahoma, but there was no consistent latitudinal effect of the elevated heat treatment. Our results indicate that projected increases in mean temperature in the Great Plains by 2050 could result in fewer swallow bugs surviving the winter and thus a reduced population size upon the arrival of their primary host in the spring, potentially affecting cliff swallow reproductive success, site use, and breeding phenology. Global climate change may alter the dynamics of host–parasite systems by reducing overall parasite abundance.
The community structure and diversity of hymenopteran parasitoids of the agromyzid leafminer Chromatomyia horticola (Diptera: Agromyzidae) were studied in agricultural, urban, and natural habitats in Changchun, Northeast China. In agricultural habitats, a total of 3,380 individuals and 19 species were collected, and the dominant species were Diglyphus isaea (Walker) (Hymenoptera: Eulophidae) (71.15%) and Chrysocharis pentheus (Walker) (Hymenoptera: Eulophidae) (12.10%). In urban habitats, a total of 5,996 individuals and 21 species were collected. There were three dominant species, C. pentheus (26.68%), Chrysocharis phryne (Walker) (Hymenoptera: Eulophidae) (22.18%), and D. isaea (22.13%). In natural habitats, a total of 1,566 individuals and 26 species were collected. There were three dominant species, C. pentheus (30.52%), D. isaea (15.52%), and Pediobius metallicus (Nees) (Hymenoptera: Eulophidae) (12.26%). The diversity indices of the parasitoid community in urban and natural habitats were higher than that in agricultural habitats, and the richness index in natural habitats was higher than that in agricultural and urban habitats. These results suggest that there are differences in the community composition and dynamics of parasitoids in different habitats. Hymenopteran parasitoids of C. horticola are less abundant in natural habitats; however, species richness is greater, and can be used as a species reserve for biological control.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere