BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The oriental armyworm, Mythimna separata (Walker, 1865) (Lepidoptera: Noctuidae), is a serious global migratory insect pest of grain crops. Although its migratory biology has been studied for a long history, the factors affecting wingbeat frequency (WBF), which is closely related to the flight activity of the insect, remain unclear. In this study, the WBFs of both cultured and migrating moths were tested under different conditions in the laboratory using a stroboscope. The results indicated that age and mating status significantly influenced WBF. One day old adults had the lowest WBF, and unmated females had a significantly higher WBF than that of mated females. In general, the WBF of males was significantly higher than that of female individuals. The WBF decreased gradually with increasing environmental humidity, and WBF had a significant negative binomial regression relationship with temperature change. The WBF of moths that fed on hydromel was much higher than those of the controls that fed on water or without diet. However, wind speed and air pressure had no significant effects on the moth WBF in the test environments. These findings provide a deeper understanding of factors that affect flight ability in M. separata, which will be helpful for developing a regional migratory monitoring and warning system of the pest, such as identifying target insect species based on the WBF from radar observation.
In 2011–2013, we determined the interactive effects of the cerambycid pheromones racemic syn-2,3-hexanediol, racemic 3-hydroxyhexan-2-one, and racemic 3-hydroxyoctan-2-one on trap catches of predators associated with bark and woodboring beetles in north Georgia and South Carolina. Temnoscheila virescens (F.) (Coleoptera: Trogossitidae) was attracted to traps baited with 3-hydroxyhexan-2-one; ethanol enhanced attraction. Traps baited with syn-2,3-hexanediol attracted Chariessa pilosa (Forster) (Coleoptera: Cleridae); attraction was interrupted by 3-hydroxyhexan-2-one. An assassin bug Apiomerus crassipes (F.) (Hemiptera: Reduviidae) was attracted to traps baited with 3-hydroxyhexan-2-one and/or 3-hydroxyoctan-2-one. Ethanol had no effect on trap catches of C. pilosa and A. crassipes. We compared response profiles of these predators to those of longhorn beetles captured in these same studies to provide insights on possible ecological interactions between these species.
Ceutorhynchinae Gistel (Coleoptera: Curculionidae) are a highly diverse phytophagous group of weevils in which the most species rich genus, Ceutorhynchus Germar (Coleoptera: Curculionidae), is mainly associated with Brassicaceae. Some Ceutorhynchinae, such as the invasive cabbage seedpod weevil (CSW), Ceutorhynchus obstrictus (Marsham), are important pests of cultivated Brassicaceae, and others are natural enemies of weeds and potential biological control agents. This study aims to characterize Ceutorhynchinae assemblages in canola growing regions of Quebec. Ceutorhynchinae were sampled in areas adjacent to canola fields or other crops in six administrative regions of Quebec during the summers of 2019 and 2020. A total of 25 Ceutorhynchinae species were collected and identified. Canonical analysis and multivariate regression tree analysis revealed that the assemblage of Ceutorhynchinae varied regionally and was either dominated by the invasive canola pest CSW or by the native weevil Ceutorhynchus neglectus Blatchley. Our results also highlighted new biological associations between weevils and Brassicaceae like the CSW with the yellow rocket, Barbarea vulgaris R. Br., native Ceutorhynchus pauxillus Dietz with common pepper grass, Lepidium densiflorum, and native Ceutorhynchus semirufus LeConte with Pennsylvania bittercress, Cardamine pensylvanica Muhl. This study also provides a useful tool to find new biological control agents against Brassicaceae weeds and to monitor the abundance and diversity of this taxon and provide baseline data to assess future impacts of exotic parasitoids of CSW on native weevils.
Beauveria bassiana (Balsamo) Vuillemin infects a wide variety of insects, including the green peach aphid, Myzus persicae (Sulzer). Volatiles emitted from B. bassiana can act as semiochemical attractants or repellents, with most responses reported to date resulting in insects avoiding B. bassiana. Since insects can detect ‘enemy-specific volatile compounds’, we hypothesized the preference behavior of M. persicae would be influenced by volatile emissions from B. bassiana. We conducted Petri dish and Y-tube olfactometer bioassays to characterize the preference of M. persicae to B. bassiana strain GHA. During Petri dish bioassays, more apterous and alate M. persicae were recorded in the vicinity of agar colonized by B. bassiana compared to agar, or Fusarium proliferatum (Matsushima) Nirenberg and Ambrosiella grosmanniae Mayers, McNew, & Harrington as representatives of nonentomopathogenic fungi. Petri dish bioassays also determined that apterous and alate M. persicae preferred filter paper saturated with 1 × 107, 1 × 106, and 1 × 105B. bassiana conidia/ml compared to Tween 80. Y-tube bioassays documented that more apterous and alate M. persicae oriented upwind to volatiles from B. bassiana mycelia compared to agar. Apterous and alate Myzus persicae were also preferentially attracted to 1 × 107 and 1 × 106B. bassiana conidia/ml compared to Tween-80 during Y-tube bioassays. These results complement a previous finding that the mosquito Anopheles stephensi (Diptera: Culicidae) Liston is attracted to volatiles from B. bassiana. Future studies aimed at characterizing the olfactory mechanism leading to the attraction of M. persicae to B. bassiana could aid in optimizing lure- and-kill strategies.
An understanding of population dynamics and insect biology is important for effective crop management strategies. Biotic factors such as pathogens play a large role on the fitness and dynamics of insect populations. Microsporidia are obligate intracellular parasites that infect more than 150 insect species and range from sublethal and chronic to fast acting and deadly. The western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a pest of both corn (Zea maize L. [Poales: Poaceae]) and dry beans (Phaseolus sp L. [Fabales: Fabaceae]) that is infected by a microsporidian parasite from the genus Nosema (Microsporidia: Nosematidae). Unfortunately, little is known about the interactions between the Nosema sp. (Microsporidia: Nosematidae) infecting the western bean cutworm and its prevalence and effects on the host population. This is especially true for the western bean cutworm population that has settled in the Great Lakes region over the last two decades. Using field caught samples and phase contrast microscopy, no consistent trends in pathogen load were observed over the course of the western bean cutworm flight season. A weak, but statistically significant relationship was observed between male body weight and pathogen load. Overall, we found a 100% prevalence of infection in the adult western bean cutworm population in Michigan.
Drosophila suzukii Matsumura, spotted-wing drosophila, is a major pest of small fruits and cherries and often managed with conventional insecticides. Our previous work found that erythritol, a nonnutritive polyol, has insecticidal properties to D. suzukii. Two formulations of erythritol (1.5M), with 0.5M sucrose or 0.1M sucralose, are most effective at killing D. suzukii. In this study, we investigated the nontarget effects of these erythritol formulations on honey bee Apis mellifera Linnaeus larvae, a pupal parasitoid of D. suzukii, Pachycrepoideus vindemiae Rondani, and western yellow jacket, Vespula pensylvanica Saussure. We directly exposed honey bee larvae by adding a high dose (2 µl) to larval cells and found no significant mortality from either formulation compared to the water control. Pachycrepoideus vindemiae may encounter erythritol in field settings when host plants of D. suzukii are sprayed. The erythritol+sucralose formulation was more detrimental than erythritol+sucrose to P. vindemiae, however, this effect was greatly reduced within a 21-d period when a floral source was present. Since yellow jackets are a nuisance pest and were attracted to the erythritol formulations in recent field trials, we tested adult V. pensylvanica survival with continuous consumption of these formulations in the laboratory. We found no detectable detriment from either formulation, compared to the sucrose control. Overall, both erythritol formulations caused minimal nontarget effects on honey bee larvae, P. vindemiae parasitoids, and western yellow jackets.
Hylurgus ligniperda (F.) and Hylastes ater (Paykull) are secondary bark beetles that have successfully spread beyond their native range, particularly into Pinus spp. plantations in the Southern Hemisphere. They feed on the phloem and cambial regions of highly stressed and recently dead Pinus spp. Here H. ligniperda and H. ater egg, larval, and pupal survival and development rates were modeled. Survival was variably influenced by temperatures depending on the life stage, but general trends were for H. ligniperda to tolerate warmer temperatures in comparison to H. ater. Nonlinear models showed 26, 29, and 34°C are the optimal temperature (maximum development rates) for the development of eggs, larvae, and pupae of H. ligniperda. In contrast, optimal temperature predictions were lower for H. ater, with estimates of 26, 22, and 23°C for the development of eggs, larvae, and pupae, respectively. H. ligniperda pre-imaginal stages were more tolerant to high temperatures, and H. ater pre-imaginal stages were more tolerant to low temperatures. Understanding the thermal requirements and limits for development for these two pests can assist in modeling emergence times, their current and potential species distribution and have potential phytosanitary applications.
Heliothinae soil pupation is understudied despite the key role this life stage plays in their development. Many Heliothinae are important agricultural pests and understanding the interplay of environment and pupation is important to optimize pest management tactics oriented toward pupae. We studied the impact of three soil types (coarse sand, high organic muck, and fine-textured clay) on Helicoverpa zea (Boddie) in-season and overwintering pupal survivorship, diapause, depth, and weight in at two locations (North and South Carolina). We introduced wild-collected (in-season) and laboratory-reared (over the winter) infestations of H. zea larvae to each of the three soils and later excavated pupae. In-season and over the winter pupal survivorship was lower in fine-textured clay soils than in coarse sand or high organic muck. In addition, pupal depth and weight, in-season and over the winter, varied significantly by soil type. In general, depth was the shallowest, and pupae weight was lower when recovered from fine-textured clay soils. Finally, diapausing characteristics varied significantly by location and year, likely impacted by differing environmental conditions. Our results suggest that fine-textured clay soils negatively impact Heliothinae pupation and may be suppressing populations in areas with these soil types.
When the favored host of an herbivorous insect pest is absent, the availability of alternative host plants can maintain insect pest populations. Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major invasive, polyphagous insect pest in China. To investigate the suitability of Chinese cabbage as an alternative host for S. frugiperda, oviposition preferences and life history traits were determined for S. frugiperda on Chinese cabbage, corn, and winter wheat over three generations. Results showed that S. frugiperda females preferred to lay their eggs on corn compared to winter wheat and Chinese cabbage. The survival rate of S. frugiperda decreased after switching from corn to Chinese cabbage, only 6% of individuals successfully pupated in the third generation. In addition, S. frugiperda reared on Chinese cabbage had lower pupal weight and fecundity. Winter wheat was a good host for S. frugiperda; although the survival rate decreased when S. frugiperda switched from corn to winter wheat in the parental generation, the survival rate increased over the next two generations to be as high as those reared on corn. Chinese cabbage is not a good long-term host for S. frugiperda, but it could maintain the pest population for at least two generations when more suitable host plants are unavailable. These results will inform management strategies for S. frugiperda.
Research on the invasive plant Phytolacca americana (L.) mostly focuses on its medicinal value and enrichment of heavy metals. However, little is known regarding its impact on native herbivorous insects. In this study, we explored the effects of P. americana and the exotic noninvasive Phytolacca icosandra (L.) on the Spodoptera litura (Fabricius) (native tobacco cutworm) via bioassay, oviposition preference, detoxifying enzyme activity analysis, and phytochemical determination. We found that the oviposition preference index (OPI) of S. litura feeding on P. icosandra was higher than that of P. americana. The developmental duration of S. litura feeding on P. icosandra was shorter than that of P. americana. Additionally, the Acetylcholinesterase (AchE) and Glutathione-S-transferase (GST) activities of S. litura feeding on P. americana were higher than that of S. litura feeding on artificial diets or P. icosandra. The content of lignin and flavonoids in P. americana was relatively high, whereas starch content was relatively low. These findings suggest invasive plants have higher resistance to herbivores, thereby suffering less damage than exotic noninvasive plants.
Ash (Fraxinus spp.) is in rapid decline across the northeastern USA due to the invasive emerald ash borer (Agrilus planipennis Fairmaire). Three recently co-occurring confamilial species may serve as alternative larval host plants for ash-reliant Lepidoptera. These prospective hosts are nonnative shrubs often planted in managed suburban landscapes and are sometimes invasive or naturalized in North America. Given the imminent decline of ash trees, we considered potential downstream effects on insect herbivores historically specialized on ash foliage. We measured the performance of three ash-specialist hawkmoths (Lepidoptera: Sphingidae) on native white ash (Fraxinus americana L.) and alternative host plants: common lilac (Syringa vulgaris L.), weeping forsythia [Forsythia suspensa (Thunb.) Vahl], and European privet (Ligustrum vulgare L.). We found the nonnative host plants provided varied support for larval survival to pupation, with biomass and growth rate affected differently by both plant and insect identity. Nearly all caterpillars reared on one alternative host, European privet, exhibited distinct malformations of the wing buds at pupation. Given caterpillar presence on privet in the field, privet may constitute an ecological trap (i.e., when female moths select a sub-optimal host, offspring survival and fitness are reduced). This work demonstrates how performance testing can reveal species-specific effects of host plant loss on mono- or oligophagous insects. For some ash specialists, alternative nonnative host plants may be suboptimal, but some cultivated host plants may be able to support certain specialist insects during native host decline. We suggest that landscaping decisions can be tailored to support threatened insect species.
Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) is a vector of ‘Candidatus Liberibacter solanacearum’ (Lso), the pathogen that causes potato zebra chip. Zebra chip incidence varies regionally, perhaps because of geographic differences in species of noncrop hosts available to the vector and in susceptibility of those hosts to Lso. Native and introduced species of Lycium (Solanales: Solanaceae) are important noncrop hosts of B. cockerelli in some regions of North America. Susceptibility of native Lycium species to Lso is uncertain. We investigated the use of two native species of Lycium by B. cockerelli in South Texas and tested whether they are susceptible to Lso. Bactericera cockerelli adults and nymphs were collected frequently from L. berlandieri Dunal and L. carolinianum Walter. Greenhouse assays confirmed that B. cockerelli develops on both species and showed that Lso infects L. carolinianum. Molecular gut content analysis provided evidence that B. cockerelli adults disperse between potato and Lycium. These results demonstrate that L. berlandieri and L. carolinianum are likely noncrop sources of potato-colonizing B. cockerelli in South Texas and that L. carolinianum is a potential source of Lso-infected psyllids. We also routinely collected the congeneric psyllid, Bactericera dorsalis (Crawford), from both Lycium species. These records are the first for this psyllid in Texas. Bactericera dorsalis completed development on both native Lycium species, albeit with high rates of mortality on L. berlandieri. B. dorsalis acquired and transmitted Lso on L. carolinianum under greenhouse conditions but did not transmit Lso to potato. These results document a previously unknown vector of Lso.
The U.S. Fish and Wildlife Service developed national guidelines to track species recovery of the endangered rusty patched bumble bee [Bombus affinis Cresson (Hymenoptera: Apidae)] and to investigate changes in species occupancy across space and time. As with other native bee monitoring efforts, managers have specifically acknowledged the need to address species detection uncertainty and determine the sampling effort required to infer species absence within sites. We used single-season, single-species occupancy models fit to field data collected in four states to estimate imperfect detection of B. affinis and to determine the survey effort required to achieve high confidence of species detection. Our analysis revealed a precipitous, seasonal, decline in B. affinis detection probability throughout the July through September sampling window in 2021. We estimated that six, 30-min surveys conducted in early July are required to achieve a 95% cumulative detection probability, whereas >10 surveys would be required in early August to achieve the same level of confidence. Our analysis also showed B. affinis was less likely to be detected during hot and humid days and at patches of reduced habitat quality. Bombus affinis was frequently observed on Monarda fistulosa (Lamiales: Lamiaceae), followed by [Pycnanthemum virginianum Rob. and Fernald (Lamiales: Lamiaceae)], Eutrochium maculatum Lamont (Asterales: Asteraceae), and Veronicastrum virginicum Farw. (Lamiales: Plantaginaceae). Although our research is focused on B. affinis, it is relevant for monitoring other bumble bees of conservation concern, such as B. occidentalis Greene (Hymenoptera: Apidae) and B. terricola Kirby (Hymenoptera: Apidae) for which monitoring efforts have been recently initiated and occupancy is a variable of conservation interest.
The threecornered alfalfa hopper (Spissistilus festinus) is a pest of grapevine, with damage caused by transmission of grapevine red blotch virus. Because grapevine is not a preferred host of the threecornered alfalfa hopper, abundance in vineyards depends on proximity to source habitats and presence of preferred hosts in vineyard understories. The potential for alfalfa fields and pastures in the Central Valley of California to serve as sources of threecornered alfalfa hopper was evaluated by quantifying parameters associated with threecornered alfalfa hopper reproductive and nutritional status. Laboratory studies determined that the threecornered alfalfa hopper is synovigenic, emerging as an adult prior to initiation of oogenesis and that females have multiple rounds of egg production. Alfalfa fields, irrigated pastures, and vineyards were sampled monthly. Adults were observed year-round in alfalfa fields and pastures, with populations peaking in fall. Gravid females were observed from February through November. While rare, adult threecornered alfalfa hoppers were collected from 2 of 4 sampled vineyards. In spring, adults were observed in samples collected from vineyard ground cover. In fall, adults were observed in samples collected from vineyard ground cover and foliage samples. Samples collected from pastures and vineyards were male biased, whereas equal numbers of males and females were observed in alfalfa fields. Adults collected from alfalfa fields were larger, heavier, and had greater estimated energetic reserves than adults collected from pastures. Adults collected from vineyards were of above average size and had relatively high estimated energetic reserves. Results suggest that alfalfa fields are more likely to serve as sources of threecornered alfalfa hoppers than irrigated pastures and that differences in male and female behavior may affect rates of pathogen transmission.
Calliptamus italicus and Gomphocerus sibiricus are indicator species in Xinjiang's low-altitude (700–1,900 m) and high-altitude (2,000–3,400 m) grasslands, respectively. C. italicus is tolerant to high-temperature stress, with its semilethal temperature (LT50) being 10.5°C higher than that of G. sibiricus. The two locust species were subjected to high-temperature stress to explore the molecular mechanisms and differences in high temperature tolerance between the two locust species. Next, the next generation sequencing (NGS) data were mapped to reference transcripts obtained using single molecule real Time (SMRT) sequencing to construct a nonparameter transcriptome. The transcriptomic response of these two locust species displayed different patterns. C. italicus had 126 differentially expressed genes (DEGs), with 59 and 67 being significantly up-regulated and down-regulated, respectively. The heat shock protein (Hsp) genes were highly expressed upon two locust species exposure to high-temperature stress, with Hsp70 being expressed the most. G. sibiricus had 86 DEGs, of which 45 were significantly up-regulated and 41 significantly down-regulated. In addition, the expression of the key enzyme encoding gene Myo-inositol oxygenase (MIOX) in inositol degradation was the highest in G. sibiricus. In the KEGG pathway, the biological processes and metabolic pathways were the most enriched pathways in C. italicus and G. sibiricus, respectively. Moreover, the quantitative fluorescence results were consistent with the transcriptome results, implying that the transcriptome results were accurate. The findings in this study provide valuable information for future research exploring the evolution mechanisms of heat resistance in C. italicus and G. sibiricus.
Hepatocyte nuclear factor 4 (HNF4) is essential for glucose homeostasis and lipid metabolism in insects. However, little is known about the role of HNF4 in whiteflies. In the present study, we identified a hepatocyte nuclear factor protein from Bemsia tabaci (Diptera: Drosophilidae) and named it BtabHNF4. The full-length of BtabHNF4 was 3,006 bp, encoding a sequence of 434 amino acids that contains a conserved zinc-finger DNA-binding domain (DBD) and a well-conserved ligand-binding domain (LBD). The temporal and spatial expression showed that BtabHNF4 was highly expressed in the female adult stage and abdominal tissues of B. tabaci. A leaf-mediated RNA interference method was used to explore the function of BtabHNF4 in whiteflies. Our results showed that the knockdown of BtabHNF4 influences the desiccation tolerance, egg production, and egg hatching rate of whiteflies. Additionally, BtabHNF4 silencing significantly inhibited the expression level of vitellogenin. These results expand the function of HNF4 and pave the way for understanding the molecular mechanisms of HNF4 in regulating multiple physiological processes.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere