Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Models of adaptive speciation are typically concerned with demonstrating that it is possible for ecologically driven disruptive selection to lead to the evolution of assortative mating and hence speciation. However, disruptive selection could also lead to other forms of evolutionary diversification, including ecological sexual dimorphisms. Using a model of frequency-dependent intraspecific competition, we show analytically that adaptive speciation and dimorphism require identical ecological conditions. Numerical simulations of individual-based models show that a single ecological model can produce either evolutionary outcome, depending on the genetic independence of male and female traits and the potential strength of assortative mating. Speciation is inhibited when the genetic basis of male and female ecological traits allows the sexes to diverge substantially. This is because sexual dimorphism, which can evolve quickly, can eliminate the frequency-dependent disruptive selection that would have provided the impetus for speciation. Conversely, populations with strong assortative mating based on ecological traits are less likely to evolve a sexual dimorphism because females cannot simultaneously prefer males more similar to themselves while still allowing the males to diverge. This conflict between speciation and dimorphism can be circumvented in two ways. First, we find a novel form of speciation via negative assortative mating, leading to two dimorphic daughter species. Second, if assortative mating is based on a neutral marker trait, trophic dimorphism and speciation by positive assortative mating can occur simultaneously. We conclude that while adaptive speciation and ecological sexual dimorphism may occur simultaneously, allowing for sexual dimorphism restricts the likelihood of adaptive speciation. Thus, it is important to recognize that disruptive selection due to frequency-dependent interactions can lead to more than one form of adaptive splitting.
Although it has been the subject of verbal theory since Darwin, the evolution of morphological trait allometries remains poorly understood, especially in the context of sexual selection. Here we present an allocation trade-off model that predicts the optimal pattern of allometry under different selective regimes. We derive a general solution that has a simple and intuitive interpretation and use it to investigate several examples of fitness functions. Verbal arguments have suggested cost or benefit scenarios under which sexual selection on signal or weapon traits may favor larger individuals with disproportionately larger traits (i.e., positive allometry). However, our results suggest that this is necessarily true only under a precisely specified set of conditions: positive allometry will evolve when the marginal fitness gains from an increase in relative trait size are greater for large individuals than for small ones. Thus, the optimal allometric pattern depends on the precise nature of net selection, and simple examples readily yield isometry, positive or negative allometry, or polymorphisms corresponding to sigmoidal scaling. The variety of allometric patterns predicted by our model is consistent with the diversity of patterns observed in empirical studies on the allometries of sexually selected traits. More generally, our findings highlight the difficulty of inferring complex underlying processes from simple emergent patterns.
Heterochrony has been an influential perspective on the evolution of morphologies, a circumstance mostly due to a strategic shift of the theory to the analysis of growth and measurable traits. A difficulty in testing hypotheses of heterochrony in the morphometric realm, and therefore in establishing its evolutionary relevance, has been the absence of an explicit criterion of homology in comparisons supposed to reveal paedomorphosis and peramorphosis. Based on the formalism of ontogenetic and allometric trajectories, we defined a criterion of primary homology in the context of morphometric characters that requires only a comparison between metric traits from ontogenetic series of two or more taxa. On the one hand, such a criterion allows for the calculation of values of shape slopes and allometric coefficients in descendants supposedly affected by changes in ontogenetic timing, thereby supplying an analytical tool for testing hypotheses of heterochrony. On the other hand, the concept of morphometric homology establishes the descriptive limits of paedomorphosis and peramorphosis, showing, for example, that the model of sequential hypermorphosis applied to the evolution of human encephalization is not within the descriptive scope of the morphological markers of heterochrony. Sequential hypermorphosis is a successful model of morphometric evolution, as further illustrated by the match between our mathematical deductions and the empirical results obtained by analyses of brain growth data. By exploring the properties of multiphasic polynomial functions, we deduce equations that define the relationship between developmental delay or acceleration and their effect on adult brain size. Together with the primary criterion of homology, we demonstrate that sequential hypermorphosis could generate the large modern human brain, but such brain is neither paedomorphic nor peramorphic. Our approach based on homology and allometry indicates that the evolution of growth is richer in phenomena than heterochrony can account for, and accordingly we argue that morphometric theory can expand its descriptive and heuristic scope by looking beyond the limits imposed by paedomorphosis and peramorphosis.
Taxa differ widely in numbers of species, which may be due either to chance alone or to factors that cause differences in speciation and extinction rates between taxa. To test whether an observed distribution of species over taxa differs from the distribution expected from chance alone, one must take into account that neither speciation nor extinction rates are known. This paper introduces a way to estimate speciation and extinction probabilities from the distribution of extant species over families and to test whether the observed distribution is different from expected. Application of this procedure to the distributions of bird, hexapod, primate, and angiosperm species over taxa provides statistical evidence of differences in rates of cladogenesis between taxa.
The Mexican cotton Gossypium gossypioides is a perplexing entity, with conflicting morphological, cytogenetic, and molecular evidence of its phylogenetic affinity to other American cottons. We reevaluated the evolutionary history of this enigmatic species using 16.4 kb of DNA sequence. Phylogenetic analyses show that chloroplast DNA (7.3 kb), nuclear ribosomal internal transcribed spacers (ITS; 0.69 kb), and unique nuclear genes (8.4 kb) yield conflicting resolutions for G. gossypioides. Eight low-copy nuclear genes provide a nearly unanimous resolution of G. gossypioides as the basalmost American diploid cotton, whereas cpDNA sequences resolve G. gossypioides deeply nested within the American diploid clade sister to Peruvian G. raimondii, and ITS places G. gossypioides in an African (rather than an American) clade. These data, in conjunction with previous evidence from the repetitive fraction of the genome, implicate a complex history for G. gossypioides possibly involving temporally separated introgression events from genetically divergent cottons that are presently restricted to different hemispheres. Based on repetitive nuclear DNA, it appears that G. gossypioides experienced nuclear introgression from an African species shortly after divergence from the remainder of the American assemblage. More recently, hybridization with a Mexican species may have resulted in cpDNA introgression, and possibly a second round of cryptic nuclear introgression. Gossypium gossypioides provides a striking example of the previously unsuspected chimeric nature of some plant genomes and the resulting phylogenetic complexity produced by multiple historical reticulation events.
The evolutionary transition from outcrossing to self-fertilization has far-reaching implications for patterns of intraspecific genetic diversity and the potential for speciation. Using DNA sequence variation at two nuclear loci, we examined the divergence history of two closely related species of Mimulus. To investigate the effects of mating system and introgressive hybridization on the outcrossing M. guttatus and the selfing M. nasutus, we inspected nucleotide diversity within and between natural populations spanning the species' geographic ranges. High sequence similarity among populations of the selfing M. nasutus points to a single evolutionary origin for the species. Consistent with their distinct mating systems, all genetic variation in M. nasutus is distributed among populations, whereas M. guttatus exhibits appreciable levels of nucleotide diversity within populations. Silent genetic diversity is extensive in M. guttatus (mean θsil/site = 0.077) and greatly exceeds the predicted twofold elevation in neutral variation for outcrossers relative to selfers. The finding of several M. guttatus sequences that share complete identity with sequences from M. nasutus suggests that recent asymmetric introgression may have occurred. We argue that exceptionally high nucleotide diversity in M. guttatus is consistent with a long-term history of directional introgression from M. nasutus to M. guttatus throughout the divergence of these two species.
The plant genus Halenia (Gentianaceae) consists of herbs growing in temperate and tropical alpine habitats and most species possess flowers in which nectar is produced in spurs. This probably helps reward only specialized long-tongued pollinators, and a narrow pollinator/flower relationship is thought to accelerate diversification rates (a key innovation). To test the pattern of diversification of Halenia against the unspurred sister group we reconstructed phylogenetic relationships among 22 species plus outgroups using nuclear ITS and chloroplast rpl16 intron sequence data. We show that Halenia originated in East Asia and migrated via North America into Central America. From there, it colonized South America three times independently, probably within the last million years. Significant changes in diversification rates were found during the evolution of Halenia using a sister group method, a likelihood method, and a diversity-through-time plot. In contrast to other studies, we could not observe a direct speciation rate effect of the evolution of nectar spurs in comparison with the unspurred sister group of Halenia. Rather, increases in diversification occurred following the colonization of Central and South America by spurred progenitor taxa. This later switch in diversification may have resulted from the availability of new geographical and ecological opportunities, or from the availability of more and different pollinators in these regions. Following the latter hypothesis, the nectar spurs were a preadaption and functioned as a key innovation only in this new biotic environment. After an initial rapid increase, a reduction in diversification rate was observed in Central America, probably illustrating density dependence of speciation rates. Finally, we found preliminary evidence for the key innovation hypothesis in geologically young spurred and unspurred lineages of Halenia in South America.
Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort plantain (Plantago lanceolata L.) using lines that had been artificially selected for high and low leaf IG concentrations for four generations. Twelve maternal half-sib families from each selection line were grown in four environments, consisting of two nutrient and two competition treatments. We tested whether: (1) in the absence of herbivores and pathogens, plants from lines selected for high IG levels have a lower fitness than plants selected for low IG levels; and (2) costs of chemical defense increase with environmental stress. Vegetative biomass did not differ between selection lines, but plants selected for high IG levels produced fewer inflorescences and had a significantly lower reproductive dry weight than plants selected for low IG levels, indicating a fitness cost of IG production. Line-by-nutrient and line-by-competition interactions were not significant for any of the fitness-related traits. Hence, there was no evidence that fitness costs increased with environmental stress. Two factors may have contributed to the absence of higher costs under environmental stress. First, IGs are carbon-based chemicals. Under nutrient limitation, the relative carbon excess may result in the production of IGs without imposing a further constraint on growth and reproduction. Second, correlated responses to selection on IG levels indicate the existence of a positive genetic association between IG level and cotyledon size. At low nutrient level, a path analysis based on family means revealed that in the presence of competitors, the negative direct effect of a high IG level on aboveground plant dry weight was partly offset by a positive direct effect of the associated larger cotyledon size. This indicates that fitness costs of defense may be modulated by environment-specific fitness effects of genetically associated traits.
Quantitative trait locus (QTL) mapping has become an established and effective method for studying the genetic architecture of complex traits. In this report, we use a QTL mapping approach in combination with data from a large selection experiment in Arabidopsis thaliana to explore a response to selection of experimental populations with differentiated genetic backgrounds. Experimental populations with genetic backgrounds derived from ecotypes Landsberg and Niederzenz were exposed to multiple generations of fertility and viability selection. This selection resulted in phenotypic shifts in a number of life-history and fitness-related characters including early development time, flowering time, dry biomass, longevity, and fruit production. Quantitative trait loci were mapped for these traits and their positions were compared to previously characterized allele frequency changes in the experimental populations (Ungerer et al. 2003). Quantitative trait locus positions largely colocalized with genomic regions under strong and consistent selection in populations with differentiated genetic backgrounds, suggesting that alleles for these traits were selected similarly in differentiated genetic backgrounds. However, one QTL region exhibited a more variable response; being positively selected on one genetic background but apparently neutral in another. This study demonstrates how QTL mapping approaches can be combined with map-based population genetic data to study how selection acts on standing genetic variation in populations.
Island archipelagos and insect-plant associations have both independently provided many useful systems for evolutionary study. The arytainine psyllid (Sternorrhyncha: Hemiptera) radiation on broom (Fabaceae: Genisteae) in the Canary Island archipelago provides a discrete system for examining the speciation of highly host-specific phytophagous insects in an island context. Phylogenetic reconstructions based on three datasets (adult and nymph morphological characters, and two mitochondrial DNA regions: part of the small subunit rRNA, and part of cytochrome oxidase I, cytochrome oxidase II and the intervening tRNA leucine) are generally consistent. The combined molecular tree provides a well-supported estimate of psyllid relationships and shows that there have been several colonizations of the Macaronesian islands but that only one has resulted in a significant radiation. Psyllid diversification has apparently been constrained by the presence of suitable host groups within the genistoid legumes, and the diversity, distribution, and abundance of those groups. The phylogeny, by indicating pairs of sister species, allows putative mechanisms of speciation to be assessed. The most common conditions associated with psyllid speciation are geographical allopatry with a host switch to closely related hosts (six examples), or geographical allopatry on the same host (four examples). Where allopatric speciation involves a host switch, these have all been to related hosts. There is some evidence that switches between unrelated host plants may be more likely in sympatry. Only one sister pair (Arytainilla cytisi and A. telonicola) and the putative host races of Arytinnis modica are sympatric but on unrelated hosts, which may be a necessary condition for sympatric speciation in these insects. Where several psyllids share the same host, resources appear to be partitioned by ecological specialization and differing psyllid phenology.
While the feasibility of bottleneck-induced speciation is in doubt, population bottlenecks may still affect the speciation process by interacting with divergent selection. To explore this possibility, I conducted a laboratory speciation experiment using Drosophila pseudoobscura involving 78 replicate populations assigned in a two-way factorial design to both bottleneck (present vs. absent) and environment (ancestral vs. novel) treatments. Populations independently evolved under these treatments and were then tested for assortative mating and male mating success against their common ancestor. Bottlenecks alone did not generate any premating isolation, despite an experimental design that was conducive to bottleneck-induced speciation. Premating isolation also did not evolve in the novel environment treatment, neither in the presence nor absence of bottlenecks. However, male mating success was significantly reduced in the novel environment treatment, both as a plastic response to this environment and as a result of environment-dependent inbreeding effects in the bottlenecked populations. Reduced mating success of derived males will hamper speciation by enhancing the mating success of immigrant, ancestral males. Novel environments are generally thought to promote ecological speciation by generating divergent natural selection. In the current experiment, however, the novel environment did not cause the evolution of any premating isolation and it reduced the likelihood of speciation through its effects on male mating success.
Studies of island endemism provide a unique opportunity to elucidate fundamental mechanisms of speciation. Here we examine intra- and interspecific DNA sequence variation at four unlinked genetic loci among populations of the Drosophila dunni subgroup to provide a detailed genealogical portrait of the process of speciation among these island endemic species. Our data indicate two major rounds of diversification that have shaped the D. dunni subgroup. The first occurred 1.6–2.6 million years ago and separated three major lineages, one in Puerto Rico and the Virgin Islands, a second in the northern Lesser Antilles and Barbados, and a third in St. Vincent and Grenada. A second round of diversification occurred in the last 96,000 years in the northern Lesser Antilles and Barbados. The four distinct species that resulted from this recent round of diversification maintain relatively high amounts of genetic variation, similar to that of a closely related mainland species, and share extensive ancestral polymorphism. These data suggest a minimal role for population bottlenecks linked to founder events in the history of the D. dunni subgroup. Further, the recent divergence of these island populations highlights the extremely rapid development of reproductive isolation and distinct patterns of abdominal pigmentation that has occurred in these species.
The genetic basis of Haldane's rule was investigated through estimating the accumulation of hybrid incompatibilities between Drosophila simulans and D. mauritiana by means of introgression. The accumulation of hybrid male sterility (HMS) is at least 10 times greater than that of hybrid female sterility (HFS) or hybrid lethality (HL). The degree of dominance for HMS and HL in a pure D. simulans background is estimated as 0.23–0.29 and 0.33–0.39, respectively; that for HL in an F1 background is unlikely to be very small. Evidence obtained here was used to test the Turelli-Orr model of Haldane's rule. Composite causes, especially, faster-male evolution and recessive hybrid incompatibilities, underlie Haldane's rule in heterogametic male taxa such as Drosophila (XY male and XX female). However, if faster-male evolution is driven by sexual selection, it contradicts Haldane's rule for sterility in heterogametic-female taxa such as Lepidoptera (ZW female and ZZ male). The hypothesis of a faster-heterogametic-sex evolution seems to fit the current data best. This hypothesis states that gametogenesis in the heterogametic sex, instead of in males per se, evolves much faster than in the homogametic sex, in part because of sex-ratio selection. This hypothesis not only explains Haldane's rule in a simple way, but also suggests that genomic conflicts play a major role in evolution and speciation.
Throughout Earth history a small number of global catastrophic events leading to biotic crises have caused mass extinctions. Here, using a technique that combines taxonomic and numerical data, we consider the effects of the Cenomanian–Turonian and Cretaceous–Tertiary mass extinctions on the terrestrial spider fauna in the light of new fossil data. We provide the first evidence that spiders suffered no decline at the family level during these mass extinction events. On the contrary, we show that they increased in relative numbers through the Cretaceous and beyond the Cretaceous–Tertiary extinction event.
Female preferences for male mating signals are often evaluated on single parameters in isolation or small suites of characters. Most signals, however, are composites of many individual parameters. In this study we quantified multivariate traits in the advertisement call of the túngara frog, Physalaemus pustulosus. We represented the calls in multidimensional scaling space and chose nine test calls to represent the range of population variation. We then tested females for phonotactic preference between calls in each pair of the nine test calls. We used statistics developed for paired comparisons in such “round robin” competitions to evaluate the null hypothesis of equal attractiveness, and to examine the degree to which females responded to calls as being different from or similar to one another in attractiveness. We then examined the attractiveness of each test call relative to all other test calls as a function of their location in multivariate acoustic space (the acoustic landscape) to visualize sexual selection on calls. Finally, we used methods from cognitive psychology to illustrate the females' perception of call attractiveness in multivariate space, and compared this perceptual landscape to the acoustic landscape of quantitative call variation.
We show that correlations between individual call characters are not strong and thus there are few biomechanical constraints on their independent evolution. Most call variables differed among males, and there was high repeatability of call characters within males. Females often discriminated between pairs of calls from the population, and there were significant differences among calls in their attractiveness. Female preferences for calls were not stabilizing. The region of the acoustic landscape that was most attractive to females included the mean call but was not centered around it. The females' perceptual or preference landscape did not correlate with the call's acoustic landscape, and female perception of calls decreased rather than enhanced call differences.
Molecular data derived from allozymes and mitochondrial nucleotide sequences, in combination with karyotypes, sex ratios, and inheritance data, have revealed the widespread Australian lizard Menetia greyii to be a complex of sexual and triploid unisexual taxa. Three sexual species, three presumed parthenogenetic lineages, and one animal of uncertain status were detected amongst 145 animals examined from south-central Australia, an area representing less than one-seventh of the total distribution of the complex. Parthenogenesis appears to have originated via interspecific hybridization, although presumed sexual ancestors could only be identified in two cases. The allozyme and mtDNA data reveal the presence of many distinct clones within the presumed parthenogenetic lineages. This new instance of vertebrate parthenogenesis is a first for the Scincidae and only the second definitive case of unisexuality in an indigenous Australian vertebrate.
The effects of natural selection are generally locus-specific, whereas migration, drift, and inbreeding are expected to have relatively uniform effects across the entire genome. This suggests that multilocus surveys of multiple populations can be used to distinguish selection from demographic effects. The purpose of this study was to test for evidence of selection on protein polymorphism in natural populations of mice in the genus Peromyscus. We analyzed published data from geographic surveys of allozyme variation and used a coalescent-based simulation model to identify specific loci that deviated from neutral expectations. Observed FST values generally exhibited a remarkably close fit to the expected neutral distributions, indicating that the majority of loci are simply tracking stochastic demographic processes. A smaller number of loci exhibited highly significant departures from the expectations of the neutral model and thus appear to be tracking the direct or indirect effects of selection. Most departures from neutrality were characterized by FST values that far exceeded neutral expectations and were therefore attributable to spatially varying selection. Interestingly, the albumin locus was implicated as a candidate gene for local adaptation in four different species of Peromyscus. The results also demonstrate that selection can severely bias marker-based estimates of neutral parameters.
Peter W. Lucas, Nathaniel J. Dominy, Pablo Riba-Hernandez, Kathryn E. Stoner, Nayuta Yamashita, Esteban LorÍa-Calderón, Wanda Petersen-Pereira, Yahaira Rojas-Durán, Ruth Salas-Pena, Silvia Solis-Madrigal, Daniel Osorio, Brian W. Darvell
Evolution of the red-green visual subsystem in trichromatic primates has been linked to foraging advantages, namely the detection of either ripe fruits or young leaves amid mature foliage. We tested competing hypotheses globally for eight primate taxa: five with routine trichromatic vision, three without. Routinely trichromatic species ingested leaves that were “red shifted” compared to background foliage more frequently than species lacking this trait. Observed choices were not the reddest possible, suggesting a preference for optimal nutritive gain. There were no similar differences for fruits although red-greenness may sometimes be important in close-range fruit selection. These results suggest that routine trichromacy evolved in a context in which leaf consumption was critical.
It has frequently been assumed that the persistence of a deleterious mutation (the average number of generations before its loss) and its pervasiveness (the average number of individuals carrying the gene before its loss) are equal. This is true for a particular simple, widely used infinite model, but this agreement is not general. If hs ≫ 1/(4Ne), where hs is the selective disadvantage of mutant heterozygotes and Ne is the effective population number, the contribution of homozygous mutants can be neglected and the simple approximate formula 1/hs gives the mean pervasiveness. But the expected persistence is usually much smaller, 2(loge(1/2hs) 1 − γ) where γ = 0.5772. For neutral mutations, the total number of heterozygotes until fixation or loss is often the quantity of interest, and its expected value is 2Ne, with remarkable generality for various population structures. In contrast, the number of generations until fixation or loss, 2(Ne/N)(1 loge2N), is much smaller than the total number of heterozygotes. In general the number of generations is less than the number of individuals.
Comparative analysis methods control for the variation linked to phylogeny before attempting to correlate the remaining variation of a trait to present-day conditions (i.e., ecology and/or environment). A portion of the phylogenetic variation of the trait may be related to ecology, however; this portion is called “phylogenetic niche conservatism.” We propose a method of variation partitioning that allows users to quantify this portion of the variation, called the “phylogenetically structured environmental variation.” The new method is applied to published data to study, in a phylogenetic framework, the link between body mass and population density in 79 species of mammals. The results suggest that an important part of the variation of mammal body mass is related to the common influence of phylogeny and population density.
Latitudinal genetic clines in body size are common in many ectotherm species and are attributed to climatic adaptation. Here, we use Quantitative Trait Loci (QTL) mapping to identify genomic regions associated with adaptive variation in body size in natural populations of Drosophila melanogaster from extreme ends of a cline in South America. Our results show that there is a significant association between the positions of QTL with strong effects on wing area in South America and those previously reported in a QTL mapping study of Australian cline end populations (P < 0.05). In both continents, the right arm of the third chromosome is associated with QTL with the strongest effect on wing area. We also show that QTL peaks for wing area and thorax length are associated with the same genomic regions, indicating that the clinal variation in the body size traits may have a similar genetic basis. The consistency of the results found for the South American and Australian cline end populations indicate that the genetic basis of the two clines may be similar and future efforts to identify the genes producing the response to selection should be focused on the genomic regions highlighted by the present work.
The genetic variation of sex ratio and sex allocation were examined in a series of half-sib analyses on the sex ratio of braconid parasitoid wasp Heterospilus prosopidis populations collected in Hawaii and Arizona. The mean threshold value and the range of the threshold for change in the sex of offspring in response to resource quality (host size) were determined. Estimates of the narrow-sense heritability (h2) of sex ratio at a specific host size ranged from 0.185 to 0.315, and those of the sex changing point (threshold value) ranged from 0.220 to 0.342. The coefficient of variation (CVA) of sex ratio was significantly larger than CVA of body weight. We discuss factors that maintained the significant additive genetic variation of sex ratio.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere