We explore the hypothesis that females choose to mate with heavier males for the genes for behavioral aggressiveness they offer their offspring in the desert spider, Agelenopsis aperta. Behavioral aggressiveness is important to competition for limited resources in the field and is thus correlated with the mass spiders achieve. We established four crosses based on the body mass relationships of parents subjected to selection in their natural environment (female mass/male mass: HI/HI, HI/LO, LO/HI, and LO/LO) and reared the F1 offspring in a noncompetitive laboratory environment. Offspring size and mass at maturity were measured, life history parameters recorded, and behavioral aggressiveness scored in a series of tests. Significant familial effects were detected in all of these measures, but pertinent cross effects were observed only in the assays measuring behavioral aggressiveness. The results were summarized in terms of the fitness costs to HI females of mating with LO males (fewer female offspring of the more aggressive phenotypes) and the benefits to LO females of mating with HI males (fewer fearful offspring of both sexes).