If phylogeographic studies are to be broadly used for assessing population-level processes relevant to speciation and systematics, the ability to identify and incorporate instances of hybridization into the analytical framework is essential. Here, we examine the evolutionary history of two chipmunk species, Tamias ruficaudus and Tamias amoenus, in the northern Rocky Mountains by integrating multivariate morphometrics of bacular (os penis) variation, phylogenetic estimation, and nested clade analysis with regional biogeography. Our results indicate multiple examples of mitochondrial DNA introgression layered within the evolutionary history of these nonsister species. Three of these events are most consistent with recent and/or ongoing asymmetric introgression of mitochondrial DNA across morphologically defined secondary contact zones. In addition, we find preliminary evidence where a fourth instance of nonconcordant characters may represent complete fixation of introgressed mitochondrial DNA via a more ancient hybridization event, although alternative explanations of convergence or incomplete sorting of ancestral polymorphisms cannot be dismissed with these data. The demonstration of hybridization among chipmunks with strongly differentiated bacular morphology contradicts long-standing assumptions that variation within this character is diagnostic of complete reproductive isolation within Tamias. Our results illustrate the utility of phylogeographic analyses for detecting instances of reticulate evolution and for incorporating this and other information in the inference of the evolutionary history of species.