Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Remington (1968) argued that 13 suture zones exist in North America. Remington defined a suture zone as, “a band of geographic overlap between major biotic assemblages, including some pairs of species or semispecies which hybridize in the zone” (p. 322). Although initially controversial, the idea that suture zones exist has picked up momentum over the past decade, due largely to the phylogeographic work of Hewitt, Avise, and their colleagues. Nevertheless, the reality of suture zones has not yet been subjected to rigorous analysis using statistical and geographic information system (GIS) approaches. To test for the existence of Remington's suture zones, we first identified 117 terrestrial hybrid zones in Canada and the United States through a literature search for the key words “cline,” “contact zone,” “hybrid zone,” and “hybridization” in articles published between 1970 and 2002. The 117 hybrid zones were mapped using a GIS approach and compared with a digitized version of Remington's original suture zone map. Overall, there does appear to be an association between hybrid zones and suture zones, but this association is largely attributable to clustering of hybrid zones in only two of the 13 suture zones recognized by Remington. The results suggest that evolutionary biologists should retain some skepticism toward Remington's suture zones.
In polygynous mammals, it is commonly observed that both sex ratios at birth and dispersal are male biased. This has been interpreted as resulting from low female dispersal causing high female local resource competition, which would select for male-biased sex ratios. However, a female-biased sex ratio can be selected despite lower female than male-biased dispersal. This will occur if the low female dispersal is close to the optimal dispersal rate, while the male dispersal is not close to the optimal dispersal rate. The actual outcome depends on the joint evolution of sex-biased dispersal and sex ratio. Earlier analyses of joint evolution imply that there will be no sex-ratio nor dispersal biases at the joint evolutionarily stable strategy, thus they do not explain the data. However, these earlier analyses assume no intersexual competition for resources. Here, we show that when males and females compete with each other for access to resources, male-biased dispersal will be associated with male-biased birth sex ratio, as is commonly observed. A trend toward male-biased birth sex ratios is also expected if there is intersexual local resource competition and if birth sex ratio is constrained so that it cannot depart from balanced sex ratio.
Evidence for the evolution of fertilization incompatibilities and rapid speciation can be biased by the occurrence of hybridization and reproductive endosymbionts such as Wolbachia. For example, patterns of mitochondrial DNA (mtDNA) variation can be obscured by mitotypes hitchhiking on extrachromosomal elements like Wolbachia, while such endosymbionts can also induce phenotypes that mirror the operation of intrinsic fertilization incompatibilities between species. Therefore, before strong inferences can be drawn concerning the rates and processes of speciation in arthropod systems, we must first assess whether extrinsic endosymbionts obscure patterns of speciation. Here, I use the Allonemobius fasciatus-socius species complex to determine what role Wolbachia has played in the presumed rapid divergence of this complex by analyzing patterns of mtDNA and nuclear DNA variation in conjunction with sequence and cytoplasmic incompatibility data on Wolbachia. Data on molecular variation suggest that Wolbachia has not induced a strong selective sweep of the mitochondrial genome; nor does Wolbachia appear to induce cytoplasmic incompatibility. Preliminary evidence indicates that a third species identified within this complex, A. sp. nov. Tex, is partially reproductively isolated from A. socius, its closest relative, via conspecific sperm precedence or some form of postzygotic isolation. Moreover, shared mitotypes between A. sp. nov. Tex and A. socius may indicate the occurrence of a hybrid zone between these species near the border of Texas and Louisiana, although they may also represent shared ancestral polymorphisms. Molecular data also indicate that all three species in this complex diverged from a common ancestor as recently as 3000–30,000 years ago. Finally, the radiation of this complex from its ancestral population likely occurred in the presence of one strain of Wolbachia, thus suggesting a minimal role for Wolbachia during this burst of speciation. In total, barriers to gene flow do appear to have evolved very rapidly in this group of crickets.
The maintenance of floral-color variation within natural populations is enigmatic because directional selection through pollinator preferences combined with random genetic drift should lead to the rapid loss of such variation. Fluctuating, balancing, and negative frequency-dependent selection mediated through pollinators have been identified as factors that may contribute to the maintenance of floral-color variation, and recently it has been suggested that indirect responses to selection on correlated characters through agents of selection other than pollinators may substantially shape the evolution of floral traits. Here, I provide empirical support for this latter view in Claytonia virginica (Portulacaceae) through a multiseason field study, a pollen supplementation study, and an artificial herbivory experiment. These studies show that most individuals fall into one of four discrete color classes, and suggest pollinator-mediated selection for increased floral redness in concurrent years. Floral color is also an indirect target of opposing directional selection via herbivores and pathogens that fluctuates through time. Taken together, these data suggest a novel mechanism by which floral-color variation may be maintained, and illustrate the importance of an inclusive, pluralistic view of selection when investigating the evolution of complex phenotypes.
Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.
Effects of maternal environment on offspring performance have been documented frequently in herbivorous insects. Despite this, very few cases exist in which exposure of parent insects to a resource causes the phenotype of their offspring to be adjusted in a manner that is adaptive for that resource, a phenomenon called adaptive transgenerational phenotypic plasticity. I performed a two-generation reciprocal cross-transplant experiment in the field with the soft scale insect Saissetia coffeae (Hemiptera: Coccidae) on two disparate host plant species in order to separate genetic effects from possible transgenerational plasticity. Despite striking differences in quality between host species, maternal host had no effect on overall offspring performance, and I detected no “acclimatization” to the maternal host species. However, there was a significant negative association between maternal and offspring development times, with potentially adaptive implications. Furthermore, offspring of mothers reared in an environment where scale densities were higher and scales were more frequently killed by fungi were significantly less likely to suffer from fungal attack than were offspring of mothers reared in an environment where densities were low and fungal attack was rare. Although S. coffeae does not appear to alter offspring phenotype to increase offspring fitness on these two distinct plant species, it does appear that offspring phenotype may be responding to some subtler aspects of maternal environment. In particular, the possibility of induced transgenerational prophylaxis in S. coffeae deserves further investigation.
The ant Formica exsecta has two types of colonies that exist in sympatry but usually as separate subpopulations: colonies with simple social organization and single queens (M type) or colonial networks with multiple queens (P type). We used both nuclear (DNA microsatellites) and mitochondrial markers to study the transition between the social types, and the contribution of males and females in gene flow within and between the types. Our results showed that the social types had different spatial genetic structures. The M subpopulations formed a fairly uniform population, whereas the P subpopulations were, on average, more differentiated from each other than from the nearby M subpopulations and could have been locally established from the M-type colonies, followed by philopatric behavior and restricted emigration of females. Thus, the relationship between the two social types resembles that of source (M type) and sink (P type) populations. The comparison of mitochondrial (ΦST) and nuclear (FST) differentiation indicates that the dispersal rate of males is four to five times larger than that of females both among the P-type subpopulations and between the social types. Our results suggest that evolution toward complex social organization can have an important effect on genetic population structure through changes in dispersal behavior associated with different sociogenetic organizations.
Several studies suggest that females mate multiply so that they can preferentially fertilize eggs with the sperm of genetically more compatible males. Unrelated males are expected to be genetically more compatible with a female than her close relatives. We tested whether black field crickets, Teleogryllus commodus, can bias sperm usage toward unrelated males by comparing egg hatching success of females mated to two of their siblings (SS), two sibling males unrelated to the female (NN) or to one unrelated male and a sibling male (NS or SN). Egg hatching success was highly repeatable. Hatching success varied significantly among females of the three mating types (P = 0.011, n = 245 females). The estimated mean hatching success of 36.8% for SS females was significantly less that the 43.4% of NN females, indicating an effect of inbreeding on hatching success. If females preferentially use the sperm of a less closely related male, the hatching success of NS/SN females should be closer to 43.4% than 36.8%. It was, in fact, only 34.9%. This does not differ significantly from the value expected if the two males contributed an equal amount of sperm that was then used randomly. Although polyandry may confer indirect genetic benefits, our results provide no evidence that female T. commodus gain these benefits by biasing paternity toward genetically more compatible males through postcopulatory mechanisms.
One of the most common life history trade-offs in animals is the reduction in survivorship with increasing reproductive effort. Despite the prevalence of this pattern, its underlying physiological mechanisms are not well understood. Here we test the hypothesis that immune suppression mediates this phenotypic trade-off by manipulating reproductive effort and measuring immune function and mortality rates in the striped ground cricket, Allonemobius socius. Because A. socius males provide females with a hemolymph-based nuptial gift during copulation, and many structural components of immunity reside in the hemolymph, we also predicted that sexual selection may differentially affect how disease resistance evolves in males and females. We found that an increased mating effort resulted in a reduced immune ability, coupled with an increased rate in age-specific mortality for both sexes. Thus, immune suppression appears to be a link between reproductive effort and cost in this system. In addition, males and females appeared to differentially invest in several aspects of immunity prior to mating, with males exhibiting a higher concentration of circulating hemocytes and a superior bacterial defense capability. This pattern may be the result of previously established positive selection on gift size due to its affect on female fecundity. In short, female choice for larger gifts may lead to a sexually dimorphic immune ability.
Scorpions of the genus Mesobuthus represent a useful terrestrial model system for studying molecular evolution. They are distributed on several Aegean islands and the adjacent mainland, they are believed to have low rates of dispersal, and evolutionary divergence dates of taxa are available based on biogeographic events that separated islands from each other and the mainland. Here, we present data on polymorphism and synonymous (Ks) and nonsynonymous (Ka) substitution rates for nine nuclear protein-coding genes of two east Mediterranean scorpion species, Mesobuthus gibbosus and M. cyprius (Buthidae). Levels of polymorphism tend to be lower in populations from islands (mean nucleotide diversity π = 0.0071 ± 0.0028) than in mainland populations (mean π = 0.0201 ± 0.0085). By using linear regression of genetic divergence versus isolation time, we estimate Ks to be 3.17 ± 1.54 per (site × 109 years), and Ka to be 0.39 ± 0.94 per (site × 109 years). These estimates for both Ks and Ka are considerably lower than for many other invertebrates, such as Drosophila, and may be attributed to scorpions' mammal-like generation times (∼2 years) and low metabolic rates. Phylogenetic analysis using maximum likelihood revealed a phylogeny that is congruent with that expected based on biogeographic events and in which divergences at synonymous sites are proportional to the dates that the taxa are believed to have split. Tests of equality of branch lengths for the Cyprus and Crete lineages revealed that Ks-estimates are about the same in both lineages, as expected from the biogeographic events that separated the islands, but Ka was increased in the Cyprus lineage compared to the Cretan lineage.
Sexual selection by mate choice represents a very important selective pressure in many animal species and might have evolutionary impacts beyond exaggeration of secondary sexual traits. Describing the shape and strength of the relationships linking mating success and nonsexual traits in natural conditions represents a challenging step in our understanding of adaptive evolution. We studied the effect of behavioral (nest site choice), immunological (trematode level of infection), genetic diversity (measured by mean d2) and morphological (standard length and pectoral fin size) traits on male mating success in a natural population of threespine sticklebacks Gasterosteaus aculeatus. Male mating success was measured by microsatellite genotyping of embryos used to infer female genotypes. First, we analyzed all territorial males (full analysis) but also considered independently only males with a nonzero mating success (reduced analysis) because some of the males with no eggs could have been part of a later breeding cycle. Multiple linear regressions identified a significant negative effect of parasite load in the full analysis, whereas no linear effect was found in the reduced analysis. The quadratic analyses revealed that nest location and parasite load were significantly related to mating success by positive (concave selection) and negative (convex selection) quadratic coefficients respectively, resulting in a saddle-shaped fitness surface. Moreover, there were significant interactions between nest location, mean d2 and parasite load in the reduced analysis. The subsequent canonical rotation of the matrix of quadratic and cross-product terms identified two major axes of the response surface: a vector representing mostly nest site choice and a vector representing parasite load. These results imply that there exists more than one way for a male threespine stickleback to maximize its mating success and that such nonlinear relationships between male mating success induced by female mate choice and male characteristics might have been overlooked in many studies.
Maternal effects and early environmental conditions are important in shaping offspring developmental trajectories. For example, in laboratory mammals, the sex ratio during gestation has been shown to influence fitness-related traits via hormonal interaction between fetuses. Such effects have the potential to shape, or constrain, many important aspects of the organism's life, but their generality and importance in natural populations remain unknown. Using long-term data in a viviparous lizard, Lacerta vivipara, we investigated the relationship between prenatal sex ratio and offspring growth, survival, and reproductive traits as adults. Our results show that females from male-biased clutches grow faster, mature earlier, but have lower fecundity than females from female-biased clutches. Furthermore, male reproduction was also affected by the sex ratio during embryonic development, with males from male-biased clutches being more likely to successfully reproduce at age one than males from female-biased clutches. Thus, the sex ratio experienced during gestation can have profound and long-lasting effects on fitness in natural populations of viviparous animals, with important implications for life-history evolution and sex allocation.
Previous hypotheses of phylogenetic relationships among Nearctic toads (Bufonidae) and their congeners suggest contradictory biogeographic histories. These hypotheses argue that the Nearctic Bufo are: (1) a polyphyletic assemblage resulting from multiple colonizations from Africa; (2) a paraphyletic assemblage resulting from a single colonization event from South America with subsequent dispersal into Eurasia; or (3) a monophyletic group derived from the Neotropics. We obtained approximately 2.5 kb of mitochondrial DNA sequence data for the 12S, 16S, and intervening valine tRNA gene from 82 individuals representing 56 species and used parametric bootstrapping to test hypotheses of the biogeographic history of the Nearctic Bufo. We find that the Nearctic species of Bufo are monophyletic and nested within a large clade of New World Bufo to the exclusion of Eurasian and African taxa. This suggests that Nearctic Bufo result from a single colonization from the Neotropics. More generally, we demonstrate the utility of parametric bootstrapping for testing alternative biogeographic hypotheses. Through parametric bootstrapping, we refute several previously published biogeographic hypotheses regarding Bufo. These previous studies may have been influenced by homoplasy in osteological characters. Given the Neotropical origin for Nearctic Bufo, we examine current distributional patterns to assess whether the Nearctic-Neotropical boundary is a broad transition zone or a narrow boundary. We also survey fossil and paleogeographic evidence to examine potential Tertiary and Cretaceous dispersal routes, including the Paleocene Isthmian Link, the Antillean and Aves Ridges, and the current Central American Land Bridge, that may have allowed colonization of the Nearctic.
Although studies of population genetic structure are very common, whether genetic structure is stable over time has been assessed for very few taxa. The question of stability over time is particularly interesting for frogs because it is not clear to what extent frogs exist in dynamic metapopulations with frequent extinction and recolonization, or in stable patches at equilibrium between drift and gene flow. In this study we collected tissue samples from the same five populations of leopard frogs, Rana pipiens, over a 22–30 year time interval (11–15 generations). Genetic structure among the populations was very stable, suggesting that these populations were not undergoing frequent extinction and colonization. We also estimated the effective size of each population from the change in allele frequencies over time. There exist few estimates of effective size for frog populations, but the data available suggest that ranid frogs may have much larger ratios of effective size (Ne) to census size (Nc) than toads (bufonidae). Our results indicate that R. pipiens populations have effective sizes on the order of hundreds to at most a few thousand frogs, and Ne/Nc ratios in the range of 0.1–1.0. These estimates of Ne/Nc are consistent with those estimated for other Rana species. Finally, we compared the results of three temporal methods for estimating Ne. Moment and pseudolikelihood methods that assume a closed population gave the most similar point estimates, although the moment estimates were consistently two to four times larger. Wang and Whitlock's new method that jointly estimates Ne and the rate of immigration into a population (m) gave much smaller estimates of Ne and implausibly large estimates of m. This method requires knowing allele frequencies in the source of immigrants, but was thought to be insensitive to inexact estimates. In our case the method may have failed because we did not know the true source of immigrants for each population. The method may be more sensitive to choice of source frequencies than was previously appreciated, and so should be used with caution if the most likely source of immigrants cannot be identified clearly.
Dispersal is of prime importance for many evolutionary processes and has been studied for decades. The reproductive consequences of dispersal have proven difficult to study, simply because it is difficult to keep track of dispersing individuals. In most previous studies evaluating the fitness effects of dispersal, immigrants at a study locality have been lumped into one category and compared to philopatric individuals. This is unfortunate, because there are reasons to believe that immigrants with long and short dispersal distances may differ substantially in reproductive success. In the present study, we used a combination of capture-recapturing and multilocus microsatellite genotyping to categorize great reed warblers at our Swedish study site as philopatric individuals or short- or long-distance dispersing immigrants. We then performed novel comparisons of lifetime reproductive success (LRS) and survival rates of these three dispersal categories. The birds belonged to cohorts 1987–1996, and data for their LRS were gathered between 1988 and 2003. The analyses showed that philopatric males attracted more females, produced more fledglings and recruits throughout their lives, and survived better than immigrants. Among the immigrant males, those categorized as long-distance dispersers had lowest LRS and survival probability. Models that included covariates of potential importance showed that the difference in LRS between dispersal categories was partly caused by corresponding variation in number of breeding years at our study site. These results indicate that short- and, in particular, long-distance dispersers were of poor phenotypic quality, but it may also be proposed that immigrants attracted few females because they were poorly adapted to the local social environment. In females, the number of local recruits corrected for the number of breeding years (as well as for number of fledglings) differed between dispersal categories in a pattern that suggests an intermediate optimal dispersal distance. Short-distance dispersers recruited more offspring per year (and per fledgling) than both philopatric individuals and long-distance dispersers. Data suggest that the low LRS of philopatric females was related to costs of inbreeding. The low LRS of long-distance dispersing females may have resulted from their offspring being especially prone to disperse outside the study area, but also other potential explanations exist, such as local maladaptation. Our study highlights the importance of separating immigrant birds on the basis of their genetic similarity to the local study population when analyzing variation in LRS and inferring realized gene flow.
Knowledge of avian phylogeny is prerequisite to understanding the circumstances and timing of the diversification of birds and the evolution of morphological, behavioral, and life-history traits. Recent molecular datasets have helped to elucidate the three most basal clades in the tree of living birds, but relationships among neoavian orders (the vast majority of birds) remain frustratingly vexing. Here, we examine intron 7 of the β-fibrinogen gene in the most taxonomically inclusive survey of DNA sequences of nonpasserine bird families and orders to date. These data suggest that Neoaves consist of two sister clades with ecological parallelisms comparable to those found between marsupial and placental mammals. Some members of the putative respective clades have long been recognized as examples of convergent evolution, but it was not appreciated that they might be parts of diverse parallel radiations. In contrast, some traditional orders of birds are suggested by these data to be polyphyletic, with representative families in both radiations.
Individual differences in sexual behavior have received much attention by evolutionary biologists, but relatively little is known about the proximate causes of this variation. We studied the quantitative genetics of male and female sexual behavior of captive zebra finches and found surprisingly strong maternal effects (differing between individual mothers) on the aggressiveness and song rate of sons and on the daughters' mating preferences for these male traits. We also found that daughters differed in their choosiness during mate-choice experiments depending on whether they originated from eggs produced early or late within the laying sequence of a clutch. Because this effect of laying order occurred independently of hatching order in cross-fostered broods, it must have been caused by consistent within-mother variation in maternal effects transmitted through the egg. Our findings raise the question whether these maternal effects might represent strategic programming of offspring behavior in response to the environment experienced by mothers or whether they are merely nonadaptive byproducts of developmental processes.
The predominance of outcrossing despite the substantial transmission advantage of self-fertilization remains a paradox. Theory suggests that selection can favor outcrossing if it enables the production of offspring that are less susceptible to pathogen attack than offspring produced via self-fertilization. Thus, if pathogen pressure is contributing to the maintenance of outcrossing in plants, there may be a positive correlation between the number of pathogen species attacking plant species and the outcrossing rate of the plant species. We tested this hypothesis by examining the association between outcrossing rate and the number of fungal pathogen species that attack a large, taxonomically diverse set of seed plants. We show that plant species attacked by more fungal pathogen species have higher outcrossing rates than plants with fewer enemies. This relationship persists after correcting for study bias among natural and agricultural species of plants. We also accounted for the nested hierarchy of relationships among plant lineages by conducting phylogenetically independent contrasts (PICs) within genera and families that were adequately represented in our dataset. A meta-analysis of the correlation between pathogen and outcrossing PICs shows that there is a positive correlation between pathogen species number and outcrossing rates. This pattern is consistent with the hypothesis that pathogen-mediated selection may contribute to the maintenance of outcrossing in species of seed plants.
KEYWORDS: Age at first reproduction, inbreeding avoidance, inbreeding depression, mating behavior, parasite life history, Schistocephalus solidus, self-fertilization
A hermaphroditic individual that prefers to outbreed but that has the potential of selfing faces a dilemma: in the absence of a partner, should it wait for one to arrive or should it produce offspring by selfing? Recent theory on this question suggests that the evolutionary solution is to find an optimal delay of reproduction that balances the potential benefit of outcrossing and the cost of delaying the onset of reproduction. Assuming that resources retained from breeding can be reallocated to future reproduction, isolated individuals, compared with individuals with available mates, are predicted to delay their age at first reproduction to wait for future outcrossing. Here, I present empirical support for this idea with experimental data from the hermaphroditic cestode Schistocephalus solidus. I show that individuals breeding alone delay their reproduction and initially produce their eggs at a slow rate relative to cestodes breeding in pairs. This delay is partly compensated for by a later higher egg production, although singly breeding cestodes still pay a cost of overall lower egg production.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere