BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Antibiotic treatment by humans generates strong viability selection for antibiotic-resistant bacterial strains. The frequency of host antibiotic use often determines the strength of this selection, and changing patterns of antibiotic use can generate many types of behaviors in the population dynamics of resistant and sensitive bacterial populations. In this paper, we present a simple model of hosts dimorphic for their tendency to use/avoid antibiotics and bacterial pathogens dimorphic in their resistance/sensitivity to antibiotic treatment. When a constant fraction of hosts uses antibiotics, the two bacterial strain populations can coexist unless host use-frequency is above a critical value; this critical value is derived as the ratio of the fitness cost of resistance to the fitness cost of undergoing treatment. When strain frequencies can affect host behavior, the dynamics may be analyzed in the light of niche construction. We consider three models underlying changing host behavior: conformism, the avoidance of long infections, and adherence to the advice of public health officials. In the latter two, we find that the pathogen can have quite a strong effect on host behavior. In particular, if antibiotic use is discouraged when resistance levels are high, we observe a classic niche-construction phenomenon of maintaining strain polymorphism even in parameter regions where it would not be expected.
The prevailing viewpoint in the study of sperm competition is that male sperm-allocation strategies evolve in response to the degree of sperm competition an ejaculate can expect to experience within a given mating. If males cannot assess the degree of sperm competition their ejaculate will face and/or they are unable to facultatively adjust sperm investment in response to perceived levels of competition, high sperm allocation (per mating) is predicted to evolve in the context of high sperm competition. An implicit assumption of the framework used to derive this result is that the degree of sperm competition is unaffected by changes in sperm-allocation strategies. We present theory based on an alternative perspective, in which the degree of sperm competition and the sperm-allocation strategy are coupled traits that coevolve together. Our rationale is that the pattern of sperm allocation in the population will, in part, determine the level of sperm competition by affecting the number of ejaculates per female in the population. In this setting, evolution in sperm-allocation strategies is driven by changes in underlying environmental parameters that influence both the degree of sperm competition and sperm allocation. This change in perspective leads to predictions that are qualitatively different from those of previous theory.
Reaction norms for age and size at maturity are being analyzed to answer important questions about the evolution of life histories. A new statistical method is developed in the framework of time-to-event data analysis, which circumvents shortcomings in currently available approaches. The method emphasizes the estimation of age-and size-dependent maturation rates. Individual probabilities of maturation during any given time interval follow by integrating maturation rate along the growth curve. The integration may be performed in different ways, over ages or sizes or both, corresponding to different assumptions on how individuals store the operational history of the maturation process. Data analysis amounts to fitting generalized nonlinear regression models to a maturation status variable. This technique has three main advantages over existing methods: (1) treating maturation as a stochastic process enables one to specify a rate of maturation; (2) age and size at which maturation occurs do not have to be observed exactly, and bias arising from approximations and interpolations is avoided; (3) ages at which sizes are measured and maturation status are observed can differ between individuals. An application to data on the springtail Folsomia candida is presented. Models with age-dependent integration of maturation rates were preferred. The analysis demonstrates a significant size dependence of the maturation rate but no age dependence.
We study the combined evolutionary dynamics of herbivore specialization and ecological character displacement, taking into account foraging behavior of the herbivores, and a quality gradient of plant types. Herbivores can adapt by changing two adaptive traits: their level of specialization in feeding efficiency and their point of maximum feeding efficiency along the plant gradient. The number of herbivore phenotypes, their levels of specialization, and the amount of character displacement among them are the result of the evolutionary dynamics, which is driven by the underlying population dynamics, which in turn is driven by the underlying foraging behavior. Our analysis demonstrates broad conditions for the diversification of a herbivore population into many specialized phenotypes, for basically any foraging behavior focusing use on highest gains while also including errors. Our model predicts two characteristic phases in the adaptation of herbivore phenotypes: a fast character-displacement phase and a slow coevolutionary niche-shift phase. This two-phase pattern is expected to be of wide relevance in various consumer-resource systems. Bringing together ecological character displacement and the evolution of specialization in a single model, our study suggests that the foraging behavior of herbivorous arthropods is a key factor promoting specialist radiation.
Because the range boundary is the locale beyond which a taxon fails to persist, it provides a unique opportunity for studying the limits on adaptive evolution. Adaptive constraints on range expansion are perplexing in view of widespread ecotypic differentiation by habitat and region within a species' range (regional adaptation) and rapid evolutionary response to novel environments. In this study of two parapatric subspecies, Clarkia xantiana ssp. xantiana and C. x. ssp. parviflora, we compared the fitness of population transplants within their native region, in a non-native region within the native range, and in the non-native range to assess whether range expansion might be limited by a greater intensity of selection on colonists of a new range versus a new region within the range. The combined range of the two subspecies spans a west-to-east gradient of declining precipitation in the Sierra Nevada of California, with ssp. xantiana in the west being replaced by ssp. parviflora in the east. Both subspecies had significantly higher fitness in the native range (range adaptation), whereas regional adaptation was weak and was found only in the predominantly outcrossing ssp. xantiana but was absent in the inbreeding ssp. parviflora. Because selection intensity on transplants was much stronger in the non-native range relative to non-native regions, there is a larger adaptive barrier to range versus regional expansion. Three of five sequential fitness components accounted for regional and range adaptation, but only one of them, survivorship from germination to flowering, contributed to both. Flower number contributed to regional adaptation in ssp. xantiana and fruit set (number of fruits per flower) to range adaptation. Differential survivorship of the two taxa or regional populations of ssp. xantiana in non-native environments was attributable, in part, to biotic interactions, including competition, herbivory, and pollination. For example, low fruit set in ssp. xantiana in the east was likely due to the absence of its principal specialist bee pollinators in ssp. parviflora's range. Thus, convergence on self-fertilization may be necessary for ssp. xantiana to invade ssp. parviflora's range, but the evolution of outcrossing would not be required for ssp. parviflora to invade ssp. xantiana's range.
We used frequency-based and coalescent-based phylogeographic analysis of sea urchin (Strongylocentrotus droebachiensis) mitochondrial DNA (mtDNA) sequences and previously published microsatellite data to understand the relative influence of colonization and gene flow from older (north Pacific) and younger (northeast Atlantic) sea urchin populations on genetic variation in the northwest Atlantic. We found strong evidence of survival of northwestern Atlantic populations in local Pleistocene glacial refugia: most haplotypes were the same as or closely related to Pacific haplotypes, with deep gene genealogies that reflect divergence times within the northwestern Atlantic that are much older than the last glacial maximum. We detected gene flow across the North Atlantic in the form of haplotypes shared with or recently descended from European populations. We also found evidence of significant introgression of haplotypes from a closely related species (S. pallidus). The relative magnitude of gene flow estimated by coalescent methods (and the effective population size differences among oceanic regions) depended on the genetic marker used. In general, we found very small effective population size in the northeastern Atlantic and high trans-Arctic gene flow between the Pacific and northwestern Atlantic. Both analyses suggested significant back-migration to the Pacific. However, microsatellites more strongly reflected older Pacific migration (with similar effective population sizes across the Arctic), whereas mtDNA sequences appeared to be more sensitive to recent trans- Atlantic dispersal (with larger differences in effective population size). These differences across marker types might have several biological or methodological causes, and they suggest caution in interpretation of the results from a single locus or class of markers.
Intrahost competition between parasite genotypes has been predicted to be an important force shaping parasite ecology and evolution and has been extensively cited as a mechanism for the evolution of increased parasite virulence. However, empirical evidence demonstrating the existence and nature of intraspecific competition is lacking for many parasites. Here, we compared within-host competitiveness between genetic strains of Schistosoma mansoni with high (HIGH-V) or low (LOW-V) virulence to their intermediate snail host, Biomphalaria glabrata. Groups of snails were exposed to either one or the other of two parasite strains, or a mixed infection of both strains, and the resulting progeny were identified using a molecular marker. In two separate experiments investigating simultaneous and sequential infections, we demonstrated that the lifetime reproductive success of parasite strain HIGH-V was reduced in the presence of a faster replicating parasite genotype, LOW-V, regardless of whether it was in a majority or minority in the initial inoculum of the simultaneous exposure or of its relative position in the sequential exposure experiment. Thus, we demonstrate competition between parasite genotypes and asymmetry in competitive success between parasite strains. Moreover, since the less virulent strain investigated here had a competitive advantage, we suggest that a high frequency of multiple infections could favor the evolution of less, rather than more, virulent parasites in this system.
Although sympatric character divergence between closely related species has been described in a wide variety of taxa, the evolutionary processes responsible for generating these patterns are difficult to identify. One hypothesis that can explain sympatric differences is ecological character displacement: the sympatric origin of morphologically divergent phenotypes in response to selection caused by interspecific competition. Alternatively, populations may adapt to different conditions in allopatry, with sympatric distributions evolving through selective colonization and proliferation of ecologically compatible phenotypes. In this study, I characterize geographic variation within two sibling species of rocky-shore gastropods that have partially overlapping distributions in central California. In sympatry, both Nucella emarginata and N. ostrina show significant differences in shell shape and shell ornamentation that together suggest that where the two species co-exist, divergent phenotypes arose as an evolutionary consequence of competition. To examine the evolutionary origins of divergent characters in sympatry, I used a comparative method based on spatial autocorrelation to remove the portion of the phenotypic variance among populations that is explained by genetic distance (using mitochondrial DNA sequences and allozyme frequency data). Because the remaining portion of the phenotypic variance represents the independent divergence of individual populations, a significant sympatric difference in the corrected dataset provides evidence of true character displacement: significant sympatric character evolution that is independent of population history. After removal of genetic distance effects in Nucella, shell shape differences remain statistically significant in N. emarginata, providing evidence of significant sympatric character divergence. However, for external shell ornamentation in both species and shell shape in N. ostrina, the significance of sympatric differences is lost in the corrected dataset, indicating that colonization events and gene flow have played important roles in the evolutionary history of character divergence in sympatry. Although the absence of a widely dispersing planktonic larva in the life cycle of Nucella will promote local adaptation, the results here indicate that once advantageous traits arise, demographic processes, such as recurrent gene flow between established populations and extinction and recolonization, are important factors contributing to the geographic pattern of sympatric character divergence.
Life histories vary widely among taxa, but within phylogenetic groups there may be a fundamental framework around which trait variation is organized, perhaps as a consequence of lineage-specific developmental constraints. In organisms with indeterminate growth, there is an ongoing problem of optimally allocating resources between growth and reproduction, and that allocation decision may manifest itself through allometric scaling. Previous work on freshwater zooplankton has shown that the ontogenetic pattern of resource allocation can be described by simple mathematical functions. An important component of understanding how such functions can explain life-history variation is to discover which parameters in these functions are robust, with respect to both resource availability and evolutionary diversification, and which parameters exhibit interspecific allometry. To shed light on these issues, detailed life table experiments were conducted on eight species in the family Daphniidae (Crustacea) at high and low levels of resources. Using data on growth, reproduction, and instar duration, the ontogeny of resource allocation to growth and reproduction could be described as functions that plateau at or shortly after the onset of maturity. To be sure that the results were not an artifact of phylogenetic structure, the parameters were tested in a phylogenetically controlled fashion. The results suggest a simple set of resource allocation rules for daphniids, whereby all species exhibit a similar form of ontogenetic change in allocation, and reach a plateau where approximately 94% of available resources are allocated to reproduction. The asymptotically maximal rate of net resources incorporated in growth and reproduction was positively related to size at maturity, whereas the rates of approach to plateaus (for both net resource assimilation and proportional allocation to reproduction) were negatively related to body size. Per-offspring investment was positively related to the square root of size at maturity. Using this approach, a wide range of interspecific variation in life-history features can be related to a single underlying trait, the size at first reproductive investment.
Identifying sources of phenotypic variability in secondary sexual traits is critical for understanding their signaling properties, role in sexual selection, and for predicting their evolutionary dynamics. The present study tests for the effects of genotype, developmental temperature, and their interaction, on size and fluctuating asymmetry of the male sex comb, a secondary sexual character, in Drosophila bipectinata Duda. Both the size and symmetry of elements of the sex comb have been shown previously to be under sexual selection in a natural population in northeastern Australia. Two independent reciprocal crosses were conducted at 25° and 29°C between genetic lines extracted from this population that differed in the size of the first (TC1) and third (TC3) comb segments. These temperatures are within the documented range experienced by the species in nature. Additive and dominance genetic effects were detected for TC1, whereas additive genetic, and Y-chromosomal effects were detected for TC3. TC2 and TC3 decreased sharply with increasing temperature, by 10% and 22%, respectively. In contrast, positional fluctuating asymmetry (PFA) significantly increased with temperature, by up to 38%. The results (1) document an important source of environmental variance in a sexual ornament expected to reduce trait heritability in field populations, and thus act to attenuate response to sexual selection, (2) suggest that variation in ornament size reflects differences in male condition; and (3) support the general hypothesis that asymmetry in a sexual ornament is indicative of developmental instability arising from environmental stress. The “environmental heterogeneity” (EH) hypothesis is proposed, and supportive evidence for it presented, to explain negative size-FA correlations in natural populations. Data and theory challenge the use of negative size-FA correlations observed in nature to support the FA-sexual selection hypothesis, which posits that such correlations are driven by differences in genetic quality among individuals.
The flightless beetle genus Tarphius Erichson (Coleoptera: Colydiidae) is a distinctive element of the beetle fauna of the Canary Islands with 29 species distributed across the five western islands. The majority of Tarphius species are rare and intimately associated with the monteverde forest and only two species occur on more than one island. In this study we investigate the phylogeography of the Canary Island Tarphius, and their relationship to Tarphius from the more northerly archipelagos of Madeira and the Azores using maximum parsimony and Bayesian inference analysis of mitochondrial cytochrome oxidase I and II sequence data. We use geological datings for the Canary Islands, Azores, and Madeira to calibrate specific nodes of the tree for the estimation of divergence times using a penalized likelihood method. Data suggest that the Canary Island species assemblage is of some antiquity, however, much of this species diversity is relatively recent in origin. The phylogenetic relationships of species inhabiting the younger islands of El Hierro and La Palma indicate that colonization events between islands have probably been a significant factor in the evolutionary history of the Canary Island species assemblage. A comparison of molecular phylogenetic studies of arthropods on the Canary Islands suggests that, in the evolution of the arthropod species community of an island, the origin of endemic species is initially the result of colonizing lineages differentiating from their source populations. However, as an island matures a greater proportion of endemic species originate from intra-island speciation.
Fishes of the genus Prochilodus are ecologically and commercially important, ubiquitous constituents of large river biota in South America. Recent ecologic and demographic studies indicate that these fishes exist in large, stable populations with adult census numbers exceeding one million individuals. Abundance data present a stark contrast to very low levels of genetic diversity (Θ) and small effective population sizes (Ne) observed in a mitochondrial (mt) DNA dataset obtained for two species, Prochilodus mariae, and its putative sister taxon, Prochilodus rubrotaeniatus. Both species occupy major river drainages (Orinoco, Essequibo, and Negro) of northeastern South America. Disparity between expectations based on current abundance and life history information and observed genetic data in these lineages could result from historical demographic bottlenecks, or alternatively, natural selection (i.e., a mtDNA selective sweep). To ascertain underlying processes that affect mtDNA diversity in these species we compared Θ and Ne estimates obtained from two, unlinked nuclear loci (calmodulin intron-4 and elongation factor-1α intron-6) using an approach based on coalescent theory. Genetic diversity and Ne estimated from mtDNA and nuclear sequences were uniformly low in P. rubrotaeniatus from the Rio Negro, suggesting that this population has encountered a historical bottleneck. For all P. mariae populations, Θ and Ne based on nuclear sequences were comparable to expectations based on current adult census numbers and were significantly greater than mtDNA estimates, suggesting that a selective mtDNA sweep has occurred in this species. Comparative genetic analysis indicates that a suite of evolutionary processes involving historical demography and natural selection have influenced patterns of genetic variation and speciation in this important Neotropical fish group.
Ecological processes clearly contribute to population divergence, yet how they interact over complex life cycles remains poorly understood. Notably, the evolutionary consequences of migration between breeding and nonbreeding areas have received limited attention. We provide evidence for a negative association between interpopulation differences in migration (between breeding and feeding areas, as well as within each) and the amount of gene flow (m) among three brook charr (Salvelinus fontinalis) populations inhabiting Mistassini Lake, Quebec, Canada. Individuals (n = 1166) captured throughout lake feeding areas over two consecutive sampling years were genotyped (10 microsatellites) and assigned to one of the three populations. Interpopulation differences in migration were compared based on spatial distribution overlap, habitat selection, migration distance within feeding areas, and morphology. We observed a temporally stable, heterogeneous spatial distribution within feeding areas among populations, with the extent of spatial segregation related to differential habitat selection (represented by littoral zone substrate). Spatial segregation was lowest and gene flow highest (m = 0.015) between two populations breeding in separate lake inflows. Segregation was highest and gene flow was lowest (mean m = 0.007) between inflow populations and a third population breeding in the outflow. Compared to outflow migrants, inflow migrants showed longer migration distances within feeding areas (64–70 km vs. 22 km). After entering natal rivers to breed, inflow migrants also migrated longer distances (35–75 km) and at greater elevations (50–150 m) to breeding areas than outflow migrants (0–15 km; −10–0 m). Accordingly, inflow migrants were more streamlined with longer caudal regions, traits known to improve swimming efficiency. There was no association between the geographic distance separating population pairs and the amount of gene flow they exchanged. Collectively, our results are consistent with the hypothesis that reduced gene flow between these brook charr populations results from divergent natural selection leading to interpopulation differences in migration. They also illustrate how phenotypic and genetic differentiation may arise over complex migratory life cycles.
Dispersal influences evolution, demography, and social characteristics but is generally difficult to study. Here we combine long-term demographic data from an intensively studied population of superb fairy-wrens (Malurus cyaneus) and multivariate spatial autocorrelation analyses of microsatellite genotypes to describe dispersal behavior in this species. The demographic data revealed: (1) sex-biased dispersal: almost all individuals that dispersed into the study area over an eight-year period were female (93%; n = 153); (2) high rates of extragroup infidelity (66% of offspring), which also facilitated local gene dispersal; and (3) skewed lifetime reproductive success in both males and females. These data led to three expectations concerning the patterns of fine-scale genetic structure: (1) little or no spatial genetic autocorrelation among females, (2) positive spatial genetic autocorrelation among males, and (3) a heterogeneous genetic landscape. Global autocorrelation analysis of the genotypes present in the study population confirmed the first two expectations. A novel two-dimensional local autocorrelation analysis confirmed the third and provided new insight into the patterns of genetic structure across the two-dimensional landscape. We highlight the potential of autocorrelation analysis to infer evolutionary processes but also emphasize that genetic patterns in space cannot be fully understood without an appropriate and intensive sampling regime and detailed knowledge of the individuals genotyped.
Among several adaptive explanations proposed to account for variation in avian egg color, that related to sexual selection is of particular interest because of its possible generality. Briefly, it proposes that because biliverdin (the pigment responsible for blue-green eggshell coloration) is an antioxidant, deposition in the eggshell by laying females may signal the capacity of females to control free radicals, despite the handicap of removing this antioxidant from their body. If males adjust parental effort in response to the intensity of the blue coloration of eggs, thereby investing more in the offspring of high-quality mates, blue eggs may represent a postmating sexually selected signal in females. Here, by image and spectrophotometric analyses of the eggs of European passerines, we tested two different predictions of the hypothesis. First, variables related to intraspecific variation in parental effort (i.e., the duration of the nestling period controlled for body mass) should be positively related to the intensity of blue-green color of the eggshell across species. Second, there should be a positive relationship between intensity of blue-green color of eggs and degree of polygyny. These predictions were supported: intensity of blue-green coloration (i.e., chroma) was significantly related to the duration of the nestling period and to degree of polygyny after controlling for possible confounding variables (i.e., body mass, incubation period, and nest type) and similarity due to common descent. Nest type (hole or nonhole) also explained a significant proportion of variation in egg chroma, perhaps reflecting different selection pressures (i.e., light conditions, risk of parasitism) affecting species with the two types of nests.
Avian extrapair mating systems provide an interesting model to assess the role of genetic benefits in the evolution of female multiple mating behavior, as potentially confounding nongenetic benefits of extrapair mate choice are seen to be of minor importance. Genetic benefit models of extrapair mating behavior predict that females engage in extrapair copulations with males of higher genetic quality compared to their social mates, thereby improving offspring reproductive value. The most straightforward test of such good genes models of extrapair mating implies pairwise comparisons of maternal half-siblings raised in the same environment, which permits direct assessment of paternal genetic effects on offspring traits. But genetic benefits of mate choice may be difficult to detect. Furthermore, the extent of genetic benefits (in terms of increased offspring viability or fecundity) may depend on the environmental context such that the proposed differences between extrapair offspring (EPO) and within-pair offspring (WPO) only appear under comparatively poor environmental conditions. We tested the hypothesis that genetic benefits of female extrapair mate choice are context dependent by analyzing offspring fitness-related traits in the coal tit (Parus ater) in relation to seasonal variation in environmental conditions. Paternal genetic effects on offspring fitness were context dependent, as shown by a significant interaction effect of differential paternal genetic contribution and offspring hatching date. EPO showed a higher local recruitment probability than their maternal half-siblings if born comparatively late in the season (i.e., when overall performance had significantly declined), while WPO performed better early in the season. The same general pattern of context dependence was evident when using the number of grandchildren born to a cuckolding female via her female WPO or EPO progeny as the respective fitness measure. However, we were unable to demonstrate that cuckolding females obtained a general genetic fitness benefit from extrapair fertilizations in terms of offspring viability or fecundity. Thus, another type of benefit could be responsible for maintaining female extrapair mating preferences in the study population. Our results suggest that more than a single selective pressure may have shaped the evolution of female extrapair mating behavior in socially monogamous passerines.
When a trait's effect on fitness depends on its interaction with other traits, the resultant selection is correlational and may lead to the integration of functionally related traits. In relation to sexual selection, when an ornamental trait interacts with phenotypic quality to determine mating success, correlational sexual selection should generate genetic correlations between the ornament and quality, leading to the evolution of honest signals. Despite its potential importance in the evolution of signal honesty, correlational sexual selection has rarely been measured in natural populations. In the dark-eyed junco (Junco hyemalis), males with experimentally elevated values of a plumage trait (whiteness in the tail or “tail white”) are more attractive to females and dominant in aggressive encounters over resources. We used restricted maximum-likelihood analysis of a long-term dataset to measure the heritability of tail white and two components of body size (wing length and tail length), as well as genetic correlations between pairs of these traits. We then used multiple regression to assess directional, quadratic, and correlational selection as they acted on tail white and body size via four components of lifetime fitness (juvenile and adult survival, mating success, and fecundity). We found a positive genetic correlation between tail white and body size (as measured by wing length), which indicates past correlational selection. Correlational selection, which was largely due to sexual selection on males, was also found to be currently acting on the same pair of traits. Larger males with whiter tails sired young with more females, most likely due to a combination of female choice, which favors males with whiter tails, and male-male competition, which favors both tail white and larger body size. To our knowledge, this is the first study to show both genetic correlations between sexually selected traits and currently acting correlational sexual selection, and we suggest that correlational sexual selection frequently may be an important mechanism for maintaining the honesty of sexual signals.
According to the aerobic capacity model, endothermy in birds and mammals evolved as a correlated response to selection for an ability of sustained locomotor activity, rather than in a response to direct selection for thermoregulatory capabilities. A key assumption of the model is that aerobic capacity is functionally linked to basal metabolic rate (BMR). The assumption has been tested in several studies at the level of phenotypic variation among individuals or species, but none has provided a clear answer whether the traits are genetically correlated. Here we present results of a genetic analysis based on measurements of the basal and the maximum swim- and cold-induced oxygen consumption in about 1000 bank voles from six generations of a laboratory colony, reared from animals captured in the field. Narrow sense heritability (h2) was about 0.5 for body mass, about 0.4 for mass-independent basal and maximum metabolic rates, and about 0.3 for factorial aerobic scopes. Dominance genetic and common environmental (= maternal) effects were not significant. Additive genetic correlation between BMR and the swim-induced aerobic capacity was high and positive, whereas correlation resulting from specific-environmental effects was negative. However, BMR was not genetically correlated with the cold-induced aerobic capacity. The results are consistent with the aerobic capacity model of the evolution of endothermy in birds and mammals.
There has been recent criticism of experiments that applied enforced monogamous mating to species with a long history of promiscuity. These experiments indicated that the newly introduced monogamy reversed sexually antagonistic coevolution and caused males to evolve to be less harmful to their mates and females to evolve reduced resistance to harm from males. Several authors have proposed alternative interpretations of these experimental results based on qualitative analysis. If well-founded, these criticisms would invalidate an important part of the empirical foundation for sexually antagonistic coevolution between the sexes. Although these criticisms have a reasonable basis in principle, we find that after quantitative evaluation that they are not supported.
The role of hybridization in the evolution of animal species is poorly understood. Transgressive segregation is a mechanism through which hybridization can generate diversity and ultimately lead to speciation. In this report we investigated the capacity of hybridization to generate novel (transgressive) phenotypes in the taxonomically diverse cichlid fishes. We generated a large F2 hybrid population by crossing two closely related cichlid species from Lake Malawi in Africa with differently shaped heads. Our morphometric analysis focused on two traits with different selective histories. The cichlid lower jaw (mandible) has evolved in response to strong directional selection, and does not segregate beyond the parental phenotype. The cichlid neurocranium (skull) has likely diverged in response to forces other than consistent directional selection (e.g., stabilizing selection), and exhibits marked transgressive segregation in our F2 population. We show that the genetic architecture of the cichlid jaw limits transgression, whereas the genetic basis of skull shape is permissive of transgressive segregation. These data suggest that natural selection, acting through the genome, will limit the degree of diversity that may be achieved via hybridization. Results are discussed in the context of the broader question of how phenotypic diversity may be achieved in rapidly evolving systems.
A recent Perspectives article by Gavrilets (2003) on the theory of speciation ignored advances in understanding processes of adaptive speciation, in which the splitting of lineages is an adaptation caused by frequency-dependent selection. Adaptive, or sympatric, speciation has been modeled since the 1960s, but the large amount of attention from both empirical and theoretical biologists that adaptive speciation has received in recent years goes far beyond what was described in Gavrilets' paper. Due to conceptual advances based on the theory of adaptive dynamics, adaptive speciation has emerged as a theoretically plausible evolutionary process that can occur in many different ecological settings.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere