Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Patterns of genetic variation can provide valuable insights for deciphering the relative roles of different evolutionary processes in species differentiation. However, population-genetic models for studying divergence in geographically structured species are generally lacking. Since these are the biogeographic settings where genetic drift is expected to predominate, not only are population-genetic tests of hypotheses in geographically structured species constrained, but generalizations about the evolutionary processes that promote species divergence may also be potentially biased. Here we estimate a population-divergence model in montane grasshoppers from the sky islands of the Rocky Mountains. Because this region was directly impacted by Pleistocene glaciation, both the displacement into glacial refugia and recolonization of montane habitats may contribute to differentiation. Building on the tradition of using information from the genealogical relationships of alleles to infer the geography of divergence, here the additional consideration of the process of gene-lineage sorting is used to obtain a quantitative estimate of population relationships and historical associations (i.e., a population tree) from the gene trees of five anonymous nuclear loci and one mitochondrial locus in the broadly distributed species Melanoplus oregonensis. Three different approaches are used to estimate a model of population divergence; this comparison allows us to evaluate specific methodological assumptions that influence the estimated history of divergence. A model of population divergence was identified that significantly fits the data better compared to the other approaches, based on per-site likelihood scores of the multiple loci, and that provides clues about how divergence proceeded in M. oregonensis during the dynamic Pleistocene. Unlike the approaches that either considered only the most recent coalescence (i.e., information from a single individual per population) or did not consider the pattern of coalescence in the gene genealogies, the population-divergence model that best fits the data was estimated by considering the pattern of gene lineage coalescence across multiple individuals, as well as loci. These results indicate that sampling of multiple individuals per population is critical to obtaining an accurate estimate of the history of divergence so that the signal of common ancestry can be separated from the confounding influence of gene flow—even though estimates suggest that gene flow is not a predominant factor structuring patterns of genetic variation across these sky island populations. They also suggest that the gene genealogies contain information about population relationships, despite the lack of complete sorting of gene lineages. What emerges from the analyses is a model of population divergence that incorporates both contemporary distributions and historical associations, and shows a latitudinal and regional structuring of populations reminiscent of population displacements into multiple glacial refugia. Because the population-divergence model itself is built upon the specific events shaping the history of M. oregonensis, it provides a framework for estimating additional population-genetic parameters relevant to understanding the processes governing differentiation in geographically structured species and avoids the problems of relying on overly simplified and inaccurate divergence models. The utility of these approaches, as well as the caveats and future improvements, for estimating population relationships and historical associations relevant to genetic analyses of geographically structured species are discussed.
We used joint-scaling analyses in conjunction with rearing temperature variation to investigate the contributions of additive, non-additive, and environmental effects to genetic divergence and incipient speciation among 12 populations of the red flour beetle, Tribolium castaneum, with small levels of pairwise nuclear genetic divergence (0.033 < Nei's D < 0.125). For 15 population pairs we created a full spectrum of line crosses (two parental, two reciprocal F1's, four F2's, and eight backcrosses), reared them at multiple temperatures, and analyzed the numbers and developmental defects of offspring. We assayed a total of 219,388 offspring from 5147 families. Failed crosses occurred predominately in F2's, giving evidence of F2 breakdown within this species. In all cases where a significant model could be fit to the data on offspring number, we observed at least one type of digenic epistasis. We also found maternal and cytoplasmic effects to be common components of divergence among T. castaneum populations. In some cases, the most complex model tested (additive, dominance, epistatic, maternal, and cytoplasmic effects) did not provide a significant fit to the data, suggesting that linkage or higher order epistasis is involved in differentiation between some populations. For the limb deformity data, we observed significant genotype-by-environment interaction in most crosses and pure parent crosses tended to have fewer deformities than hybrid crosses. Complexity of genetic architecture was not correlated with either geographic distance or genetic distance. Our results support the view that genetic incompatibilities responsible for postzygotic isolation, an important component of speciation, may be a natural but serendipitous consequence of nonadditive genetic effects and structured populations.
Character displacement is typically identified by comparing phenotypic differences in sympatry and allopatry. Recently, however, Goldberg and Lande (2006) pointed out that when phenotypic characters vary along an environmental gradient, the standard approach may fail to identify sympatric character divergence. Here we present a general analytical procedure for identifying sympatric character divergence while accounting for phenotypic changes that covary with environmental variables. Our approach uses residual randomization from a generalized linear model, and allows the statistical comparison of sympatric phenotypic divergence to allopatric phenotypic divergence while accounting for phenotypic variation along a gradient. Through simulation we demonstrate that our approach correctly identifies patterns of sympatric character divergence when they are present, and does not identify such patterns when they are not. Our analytical approach complements and extends the suggestions of Goldberg and Lande (2006), by allowing a full statistical assessment of the varied patterns of character displacement along environmental gradients, or while accounting for other covariates and sources of variation.
Sexual conflict has been suggested as a general cause of genetic diversification in reproductive characters, and as a possible cause of speciation. We use individual-based simulations to study the dynamics of sexual conflict in an isolated diploid population with no spatial structure. To explore the effects of genetic details, we consider two different types of interlocus interaction between female and male traits, and three different types of intra-locus interaction. In the simulations, sexual conflict resulted in at least the following five regimes: (1) continuous coevolutionary chase, (2) evolution toward an equilibrium, (3) cyclic coevolution, (4) extensive genetic differentiation in female traits/genes only, and (5) extensive genetic differentiation in both male and female traits/genes. Genetic differentiation was hardly observed when the traits involved in reproduction were determined additively and interacted in a trait-by-trait way. When the traits interacted in a component-by-component way, genetic differentiation was frequently observed under relatively broad conditions. The likelihood of genetic differentiation largely depended on the number of loci and the type of within-locus dominance. With multiple loci per trait, genetic differentiation was often observed but sympatric speciation was typically hindered by recombination. Sympatric speciation was possible but only under restrictive conditions. Our simulations also highlight the importance of stochastic effects in the dynamics of sexual conflict.
Unidirectional elaboration of male trait evolution (e.g., larger, brighter males) has been predicted by receiver bias models of sexual selection and empirically tested in a number of different taxa. This study identifies a bidirectional pattern of male trait evolution and suggests that a sensory constraint is driving this divergence. In this system, the inherent trade-off in dichromatic visual detection places limits on the direction that sensory biases may take and thus provides a quantitative test of the sensory drive model. Here I show that sensory systems with trade-offs in detection abilities produce bidirectional biases and that signal design properties match these biases. I combine species-specific measurements and ancestral estimates with visual detection modeling to examine biases in sensory and signaling traits across five fish species occupying optically diverse habitats in the Californian kelp forest. Species-specific divergence in visual pigments correlates with changes in environment and produces different sensory biases—favoring luminance (brightness) detection for some species and chromatic (color) detection for others. Divergence in male signals (spectral reflectance of orange, blue, and silver color elements) is predicted by each species' sensory bias: color divergence favors chromatic detection for species with chromatically biased visual systems, whereas species with luminance sensory biases have signals favoring luminance detection. This quantitative example of coevolution of communication traits varying in a bidirectional pattern governed by the environment is the first demonstration of sensory trade-offs driving signal evolution.
That chromosomal rearrangements may play an important role in maintaining postzygotic isolation between well-established species is part of the standard theory of speciation. However, little evidence exists on the role of karyotypic change in speciation itself—in the establishment of reproductive barriers between previously interbreeding populations. The large genus Agrodiaetus (Lepidoptera: Lycaenidae) provides a model system to study this question. Agrodiaetus butterflies exhibit unusual interspecific diversity in chromosome number, from n = 10 to n = 134; in contrast, the majority of lycaenid butterflies have n = 23/24. We analyzed the evolution of karyotypic diversity by mapping chromosome numbers on a thoroughly sampled mitochondrial phylogeny of the genus. Karyotypic differences accumulate gradually between allopatric sister taxa, but more rapidly between sympatric sister taxa. Overall, sympatric sister taxa have a higher average karyotypic diversity than allopatric sister taxa. Differential fusion of diverged populations may account for this pattern because the degree of karyotypic difference acquired between allopatric populations may determine whether they will persist as nascent biological species in secondary sympatry. This study therefore finds evidence of a direct role for chromosomal rearrangements in the final stages of animal speciation. Rapid karyotypic diversification is likely to have contributed to the explosive speciation rate observed in Agrodiaetus, 1.6 species per million years.
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.
Past climate shifts have led to major oscillations in species distributions. Hence historical contingencies and selective processes occurring during such phases may be determinants for understanding the forces that have shaped extant phenotypes. In the plant–ant Petalomyrmex phylax (Formicinae), we observed spatial variation in number of queens in mature colonies, from several queens (high polygyny) in the median part of its distribution to a moderate number of queens (weak polygyny) or even only a single queen (monogyny) in the southwesternmost populations. This variation did not correlate with indicators of variation in current nest site availability and colony turnover, the supposedly determinant selective forces acting on gyny in ants. We show here that the variation in social structure correlates with a historical process corresponding to a progressive colonization of coastal southern Cameroon by the ant. Using microsatellite markers, we observed a clear pattern of isolation by distance except for the southernmost populations. Measures of genetic variability that do not take into account allele size were at equilibrium in all except the southernmost populations, suggesting recent foundation of the latter. Measures of genetic diversity taking into account allele size showed a clinal north–south decrease in variance of allele size. We propose that southern populations have yet to regain allele size variance after bottlenecks associated with the foundation of new populations, and that this variance is regained over time. Hence variation in social structure mirrors an old but still active southward colonization process or metapopulation dynamics, possibly in association with an expansion of the rain forest habitat during the late Holocene. A low number of queens in ant colonies is typically associated with strong dispersal capacity. We therefore suggest that the initial founders of new populations belong to the monogynous to weakly polygynous phenotype, and that queen number progressively increases in older populations.
Early hominins, australopiths, were similar to most large primates in having relatively short hindlimbs for their body size. The short legs of large primates are thought to represent specialization for vertical climbing and quadrupedal stability on branches. Although this may be true, there are reasons to suspect that the evolution of short legs may also represent specialization for physical aggression. Fighting in apes is a behavior in which short legs are expected to improve performance by lowering the center of mass during bipedal stance and by increasing the leverage through which muscle forces can be applied to the ground. Among anthropoid primates, body size sexual dimorphism (SSD) and canine height sexual dimorphism (CSD) are strongly correlated with levels of male–male competition, allowing SSD and CSD to be used as indices of male–male aggression. Here I show that the evolution of hindlimb length in apes is inversely correlated with the evolution of SSD (R2 = 0.683, P-value = 0.006) and the evolution of CSD (R2 = 0.630, P-value = 0.013). In contrast, a significant correlation was not observed for the relationship between the evolution of hindlimb and forelimb lengths. These observations are consistent with the suggestion that selection for fighting performance has maintained relatively short hindlimbs in species of Hominoidea with high levels of male–male competition. Although australopiths were highly derived for striding bipedalism when traveling on the ground, they retained short legs compared to those of Homo for over two million years, approximately 100,000 generations. Their short legs may be indicative of persistent selection for high levels of aggression.
Many hypotheses have been proposed to explain multiple mating in females. One of them is bet hedging, that is avoiding having no or very few offspring in any given generation, rather than maximizing the expected number of offspring. However, within-generation bet hedging is generally believed to be an unimportant evolutionary force, except in very small populations. In this study, we derive predictions of the bet-hedging hypothesis for a case in which local insect populations are often small, offspring performance varies, for example, due to inbreeding depression, and the groups of gregarious larvae have to exceed a threshold size before they are likely to survive throughout the larval stage. These conditions exist for populations of the Glanville fritillary butterfly (Melitaea cinxia), potentially making bet-hedging benefits larger than usual. We observed matings in a field cage, which allowed detailed observations under practically natural conditions, and analyzed genetic paternity of egg clutches laid by females under direct observation. The egg-laying and survival patterns are in line with the predictions, supporting the hypothesis that multiple mating in M. cinxia presents a rare case of within-generation bet hedging.
Discussions about the evolution of female mating preferences have often suggested that females should express multiple strong preferences when different male traits are correlated with different mating benefits, yet few studies have directly tested this hypothesis by comparing the strength of female preferences for male traits known to be correlated with different benefits. In the variable field cricket, Gryllus lineaticeps, females receive fecundity and fertility benefits from mating with males with higher chirp rates and life-span benefits from mating with males with longer chirp durations. Although females prefer higher chirp rates and longer chirp durations when the other trait is held constant, it is possible that they give priority to one of these song traits when both vary. In this study, we examined the relative importance of chirp rate and chirp duration in female mate choice using single-stimulus presentations of songs that varied in both chirp rate and chirp duration. Females expressed both directional and stabilizing preferences based on chirp rate, responding most strongly to a chirp rate approximately one standard deviation above the population mean. Females did not express preferences based on chirp duration, and did not express correlational preferences. These results suggest that females may give priority to the reproductive benefits provided by males that produce higher chirp rates.
The conspicuous displays that warn predators of defenses carried by potential prey have been of interest to evolutionary biologists from the time of Wallace and Darwin to the present day. Although most studies implicitly assume that these “aposematic” warning signals simply indicate the presence of some repellent defense such as a toxin, it has been speculated that the intensity of the signal might reliably indicate the strength of defense so that, for example, the nastiest prey might “shout loudest” about their unprofitability. Recent phylogenetic and empirical studies of Dendrobatid frogs provide contradictory views, in one instance showing a positive correlation between toxin levels and conspicuousness, in another showing a breakdown of this relationship. In this paper we present an optimization model, which can potentially account for these divergent results. Our model locates the optimal values of defensive traits that are influenced by a range of costs and benefits. We show that optimal aposematic conspicuousness can be positively correlated with optimal prey toxicity, especially where population sizes and season lengths vary between species. In other cases, optimal aposematic conspicuousness may be negatively correlated with toxicity; this is especially the case when the marginal costs of aposematic displays vary between members of different populations. Finally, when displays incur no allocation costs there may be no single optimum value for aposematic conspicuousness, rather a large array of alternative forms of a display may have equal fitness.
Recently published evidence based on cytological staining indicates that sperm die rapidly after being stored in female Drosophila melanogaster. However, measuring sperm death in this way has a potential artifact: the death of sperm owing to the extraction, mounting, and staining of sperm. Here we use a protocol that bypasses all of these potential extraneous mortality factors to test the hypothesis that there is high mortality of stored sperm in D. melanogaster. Contrary to the findings from cytological staining, our data indicates that mortality of stored sperm is quite low.
Current theory to explain the adaptive significance of sex change over gonochorism predicts that female-first sex change could be adaptive when relative reproductive success increases at a faster rate with body size for males than for females. A faster rate of reproductive gain with body size can occur if larger males are more effective in controlling females and excluding competitors from fertilizations. The most simple consequence of this theoretical scenario, based on sexual allocation theory, is that natural breeding sex ratios are expected to be female biased in female-first sex changers, because average male fecundity will exceed that of females. A second prediction is that the intensity of sperm competition is expected to be lower in female-first sex-changing species because larger males should be able to more completely monopolize females and therefore reduce male–male competition during spawning. Relative testis size has been shown to be an indicator of the level of sperm competition, so we use this metric to examine evolutionary responses to selection from postcopulatory male–male competition. We used data from 116 comparable female-first sex-changing and nonhermaphroditic (gonochoristic) fish species to test these two predictions. In addition to cross-species analyses we also controlled for potential phylogenetic nonindependence by analyzing independent contrasts. As expected, breeding sex ratios were significantly more female biased in female-first sex-changing than nonhermaphroditic taxa. In addition, males in female-first sex changers had significantly smaller relative testis sizes that were one-fifth the size of those of nonhermaphroditic species, revealing a new evolutionary correlate of female-first sex change. These results, which are based on data from a wide range of taxa and across the same body-size range for either mode of reproduction, provide direct empirical support for current evolutionary theories regarding the benefits of female-first sex change.
The build up of an equilibrium between mutation, selection, and drift in populations of moderate size is an important evolutionary issue, and can be critical in the conservation of endangered populations. We studied this process in two Drosophila melanogaster populations initially lacking genetic variability (C1 and C2) that were subsequently maintained during 431 or 165 generations with effective population size Ne ∼ 500 (estimated by lethal complementation analysis). Each population originated synchronously to a companion set of full-sib mutation accumulation (MA) lines, C1 and MA1 were derived from an isogenic origin and C2 and MA2 from a single MA1 line at generation 265. The results suggest that both C1 and C2 populations were close to the mutation–selection–drift balance for viability and bristle traits, and are consistent with a 2.5-fold increase of the mutation rate in C2 and MA2. Despite this increase, the average panmictic viability in C2 was only slightly below that of C1, indicating that the expressed loads due to segregating deleterious mutation were small, in agreement with the low deleterious mutation rate (0.015–0.045) previously reported for the MA1 lines. In C1, the nonlethal inbreeding depression rate for viability was 30% of that usually estimated in segregating populations. The genetic variance for bristles regenerated in C1 and C2 was moderately smaller than the average value reported for natural populations, implying that they have accumulated a substantial adaptive potential. In light of neutral and selective predictions, these results suggest that bristle additive variance was predominantly due to segregation of mutations with deleterious effects of the order of 10−3, and is consistent with relatively weak causal stabilizing selection (Vs ≈ 30).
It is often assumed that the efficiency of selection for mutational robustness would be proportional to mutation rate and population size, thus being inefficient in small populations. However, Krakauer and Plotkin (2002) hypothesized that selection in small populations would favor robustness mechanisms, such as redundancy, that mask the effect of deleterious mutations. In large populations, by contrast, selection is more effective at removing deleterious mutants and fitness would be improved by eliminating mechanisms that mask the effect of deleterious mutations and thus impede their removal. Here, we test whether these predictions are supported in experiments with evolving populations of digital organisms. Digital organisms are self-replicating programs that inhabit a virtual world inside a computer. Like their organic counterparts, digital organisms mutate, compete, evolve, and adapt by natural selection to their environment. In this study, 160 populations evolved at different combinations of mutation rate and population size. After 104 generations, we measured the mutational robustness of the most abundant genotype in each population. Mutational robustness tended to increase with mutation rate and to decline with population size, although the dependence with population size was in part mediated by a negative relationship between fitness and robustness. These results are independent of whether genomes were constrained to their original length or allowed to change in size.
Parasites exploit an inherently patchy resource, their hosts, which are discrete entities that may only be available for infection within a relatively short time window. However, there has been little consideration of how heterogeneities in host availability may affect the phenotypic or genotypic composition of parasite populations or how parasites may evolve to cope with them. Here we conduct a selection experiment involving an entomopathogenic nematode (Steinernema feltiae) and show for the first time that the infection rate of a parasite can evolve rapidly to maximize the chances of infecting within an environment characterized by the rate of host availability. Furthermore, we show that the parasite's infection rate trades off with other fitness traits, such as fecundity and survival. Crucially, the outcome of competition between strains with different infection strategies depends on the rate of host availability; frequently available hosts favor “fast” infecting nematodes, whereas infrequently available hosts favor “slow” infecting nematodes. A simple evolutionarily stable strategy (ESS) analysis based on classic epidemiological models fails to capture this behavior, predicting instead that the fastest infecting phenotype should always dominate. However, a novel model incorporating more realistic, discrete bouts of host availability shows that strain coexistence is highly likely. Our results demonstrate that heterogeneities in host availability play a key role in the evolution of parasite life-history traits and in the maintenance of phenotypic variability. Parasite life-history strategies are likely to evolve rapidly in response to changes in host availability induced by disease management programs or by natural dynamics in host abundance. Incorporating parasite evolution in response to host availability would therefore enhance the predictive ability of current epidemiological models of infectious disease.
Change in body mass with time has been considered for many clades, often with reference to Cope's rule, which predicts a tendency to increase in body size. A more general rule, namely increase in the range of body mass with time, is analyzed here for vertebrates. The log range of log vertebrate body mass is shown to increase linearly and highly significantly with the log of duration of clade existence. The resulting regression equations are used to predict the origin age, initial body mass, and subsequent dynamics of body mass range for primate clades such as the New World monkeys (Platyrrhini, 32 million years ago, initial mass of 1.7 kg) and the Anthropoidea (57 million years ago, initial mass of 0.12 kg), tested against the primate fossil record. Using these methods, other major primate clades such as Lemuriformes and Adapoidea are also estimated to have originated in the Tertiary (63 and 64 million years ago, respectively), with only the Plesiadapiformes originating in the Cretaceous (83 million years ago). Similarities of body mass range between primate and other vertebrate sister groups are discussed. Linear relationships of log range and log duration are considered with respect to Brownian processes, with the expected regression coefficients from the latter explored through simulations. The observed data produce regression coefficients that overlap with or are higher than those under Brownian processes. Overall, the analyses suggest the dynamics of vertebrate body mass range in morphologically disparate clades are highly predictable over many tens of million years and that the dynamics of phenotypic characteristics can assist molecular clock and fossil models in dating evolutionary events.
The heterogametic sex tends to be rare, absent, sterile, or deformed in F1 hybrid crosses between species, a pattern called Haldane's rule (HR). The introgression of single genes or chromosomal regions from one drosophilid species into the genetic background of another have shown that HR is most often associated with fixed genetic differences in inter-specific crosses. However, because such introgression studies have involved species diverged several hundred thousand generations from a common ancestor, it is not clear whether HR attends the speciation process or results from the accumulation of epistatically acting genes postspeciation. We report the first evidence for HR prior to speciation in crosses between two populations of the red flour beetle, Tribolium castaneum, collected 931 km apart in Colombia and Ecuador. In this cross, HR is manifested as an increase in the proportion of deformed males compared to females and the expression of HR is temperature dependent. Neither population, when crossed to a geographically distant population from Japan, exhibits HR at any rearing temperature. Using joint-scaling analysis and additional data from backcrosses and F2's, we find that the hybrid incompatibilities and the emergence of HR are concurrent processes involving interactions between X-linked and autosomal genes. However, we also find many examples of incompatibilities manifest by F2 and backcross hybrids but not by F1 hybrids and most incompatibilities are not sex different in their effects, even when they involve both X-autosomal interactions and genotype-by-environment interactions. We infer that incipient speciation in flour beetles can occur with or without HR and that significant hybrid incompatibilities result from the accumulation of epistatically acting gene differences between populations without differentially affecting the heterogametic sex in F1 hybrids. The temperature dependence of the incompatibilities supports the inference that genotype-by-environment interactions and adaptation to different environments contribute to the genetic divergence important to postzygotic reproductive isolation.
In recent years population genetics and phylogeographic studies have become increasingly valuable tools for inferring both historical and present-day genetic patterns within marine species. Here, we take a comparative approach to population-level study, analyzing original mitochondrial DNA data from 969 individuals representing 28 chiton (Mollusca: Polyplacophora) species to uncover large-scale genetic patterns along the Pacific coast of North America. The data reveal a distinct latitudinal connectivity gradient among chitons: species that exist at lower latitudes tend to have more isolated populations. This trend appears to be a product of between-species differences; within species, no significant gradient in connectivity is observed. Lower average annual sea surface temperatures are hypothesized to contribute to longer larval duration (and by extension, greater connectivity) among lecithotrophic species, providing a mechanism for the observed positive correlation between gene flow and latitude. Because increased isolation among populations may lead to speciation, a latitudinal trend in gene flow may contribute to the increased species diversity observed at lower latitudes.
How the displays of bowerbirds have evolved has attracted widespread interest. Endler et al. (2005) analyzed color use in display in a subset of bowerbird species and generalized their results to all bowerbirds. Here we discuss problems with their analysis that calls into question their conclusions. For example, they state that bowerbirds do not use decorations that match their background, but this is not supported by their results. They reconstruct historical patterns of sexual dimorphism in plumage display using questionable methodology. The high lability of these display traits makes these reconstructions unreliable and, using accepted methods and acknowledging the lability problem, we were unable to support their conclusions. Their claim that plumage differences between sympatric species are due to character displacement is not supported by the available data. Their focus is on visual contrast as the cause for display color and we offer additional hypotheses that may contribute to explaining color use. We support studies of spectral analysis of display traits but urge greater care in using this information to reach conclusions about how colorful displays have evolved.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere