BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Two new species of leafhopper subgenus Pediopsoides (Pediopsoides)Matsumura, 1912P. (P.) bispinata Li, Dai & Li sp. nov. and P. (P.) nigrolabium Li, Dai & Li sp. nov. from southern China, are described and illustrated. An updated checklist and distribution of the subgenus from the world is provided, along with a key to distinguish all species of the subgenus.
The Asian Citrus Psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is a serious pest of citrus in many citrus-producing regions. It vectors the bacterium ‘Candidatus Liberibacter asiaticus’ thought to be the causal agent of the devastating “Huanglongbing” (HLB) or citrus greening disease. Both pest and the disease are well established in Florida. Several insect predators, particularly lady beetles and the parasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae), are known to cause significant mortality to ACP immatures. However, there are no reports on the effectiveness of predatory mites against ACP We evaluated the suitability of D. citri eggs and nymphs as prey for the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) in laboratory arenas, and its potential to reduce psyllid populations in the glasshouse on caged Murraya paniculata (L.) Jack plants. Mortality of D. citri eggs on M. paniculata shoots exposed to A. swirskii in plastic arenas was 4 times greater after 6 d compared to unexposed control plants. Mites were also observed sucking out body fluids of first instar nymphs. In the glasshouse, total number of D. citri adults collected over 8 wk from infested plants in ventilated cylinders with A. swirskii present averaged 80% less than the control without mites. These findings showed a significant negative impact of A. swirskii on D. citri under controlled conditions. Further research needs to focus on rates and frequency of release, impact of A. swirskii on D. citri populations in citrus and other hosts under field conditions, and interactions of A. swirskii and D. citri with native predatory mites.
The Chinese Andraca is revised with the check-list annotated. A new bombycid geographic subspecies, Andraca nobilorum houtuae Wang & Zolotuhin subsp. nov., is described from Damingshan National Nature Reserve, South China. The new subspecies differs from the nominate A. nobilorum. in Central Vietnam by the darker marker at the apex of the forewing indistinct but prominent in the holotype of A. nobilorum, and its male genitalia with the apex of valva slenderer and pointed. A key to the Chinese Andraca species and Pseudandraca flavamaculata, and the distributional maps are given. The male holotype specimen of the new subspecies is deposited in SCAU (South China Agricultural University, Guangzhou, China).
We examined the association between the exotic South American cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), and its host plants (prickly pear cacti, subfamily Opuntioideae) in Florida to assess the role of host plant identity and local host community on the prevalence of this invasive moth. From May to September 2008, we surveyed 4,243 plants across 165 sites throughout Florida for C. cactorum. The probability of C. cactorum presence at a particular site was best explained by the presence of either Opuntia humifusa var. ammophila (Small) L. D. Benson or O. stricta (Haworth) Haworth. Within infested sites, only O. stricta individuals were significantly more infested than other host plants. Our results suggest that understanding patterns of C. cactorum infestation, both in Florida and as it spreads towards the western United States relies, at least in part, on determining the mechanism by which O. stricta influences the suitability of specific host communities.
The clonal propagation of Eucalyptus in plastic tube containers with growing media substrate without direct contact of seedlings with soil floor in nurseries, changed the status of insects such as fungus gnats (Diptera: Sciaridae), especially the genus Bradysia. This study monitored populations of adults within a Eucalyptus spp. tree nursery in the municipality of Bom Despacho, Minas Gerais State, Brazil. Adult samples were collected monthly, during seven months with 58 yellow sticker card traps, including 21 in a mini garden, 16 in a greenhouse, and 21 in a shaded house. All individuals collected were identified as Bradysia difforrais Frey, 1948 (= Bradysia paupera Tuomikoski, 1960) (Diptera: Sciaridae). The population dynamics of B. difformis were not correlated with environmental variables (temperature and relative humidity), but varied between the three sectors of the nursery. This work is the first report associated with the population dynamics of B. difformis of nursery seedlings of Eucalyptus spp. in Brazil.
Laurel wilt is a destructive disease caused by the fungus Raffaelea lauricola, which is transmitted by the invasive redbay ambrosia beetle, Xyleborus glabratus. Here we document ambrosia beetles that emerged from wilted avocado trees throughout Florida. In addition, the ambrosia beetle fauna associated with wilted swampbay trees in Miami-Dade was studied. Fourteen species of scolytine beetles were found associated with avocado wood from different parts of Florida. Multiple species of ambrosia beetles were found breeding in avocado and swampbay wood infected by R. lauricola with or without the presence of its primary vector, X. glabratus. Work is under way to determine whether other ambrosia beetle species can carry R. lauricola and transmit this pathogen to healthy avocado and swampbay trees.
Two new species Willemia antennomonstrumsp. nov. collected in Hainan and W. dhaeseisp. nov. collected in Shandong from sand beaches of the Pacific coast of China are described. Both species belong to the buddenbrocki group. Willemia antennomonstrumsp. nov. shows convergence to family Onychiuridae, because it has a remarkable expanded granulated guard sensilla in sensory organ of antennal segment III. Willemia dhaeseisp. nov. differs principally from other members of the group by presenting a m-row of setae on abdominal segment IV. Willemia koreanaThibaud & Lee, 1994 (anophthalma group) is recorded in China for the first time; having been found at Zhejiang.
KEYWORDS: sterile insect technique, mass rearing, chilling, temperature effects, Técnica del Insecto Estéril, cría en masa, enfriamiento, efectos de temperatura
The Sterile Insect Technique (SIT) is used to suppress or eradicate infestations of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann). The success of the SIT depends to a large degree on the ability of sterile males to compete successfully against wild males in obtaining matings with wild females. Sterile males are chilled to allow their transfer to and subsequent storage within the aircraft used for the releases. Here, we describe the results of an experiment that investigated the effects of varying chill duration (at 3–8 °C for 2–6 h) on flight ability of sterile males derived from mass-rearing facilities in Hawaii and Guatemala. Flight ability decreased significantly, and at the same rate, with increasing chill duration for flies from both production facilities. However, for any given chill duration, the Hawaii-derived flies displayed greater flight ability than the Guatemala-derived flies. In addition, there was significant variation in flight ability among daily shipments from both facilities. Nevertheless, the present data clearly reveal that limiting chill duration promotes higher flight performance of released sterile males. Implications of our findings for Mediterranean fruit fly SIT programs are discussed.
Glutathione S-transferases (GSTs) were purified from 3 developmental stages of Bactrocera minax through glutathione-agarose affinity chromatography, and characterized subsequently using the Michaelis-Menten kinetics toward the artificial substrates 1-chloro-2, 4-dinitrobenzene (CDNB) and reduced glutathione (GSH), respectively. Compared to the counterparts of third instar larva and adult, the highest specific activity of the purified GSTs towards CDNB was observed in the pupae. Although the specific activities of purified enzymes varied among 3 developmental stages, the purification yields were similar. SDS-PAGE revealed only one band at 23 kDa for all 3 stages. GSTs of the adults exhibited the highest Km value towards CDNB, while for GSH the pupae possessed the highest Km. The optimum temperature and pH for CDNB conjugation of the 3 stages were 37 °C and 7.5, respectively. Inhibition kinetics showed that ethacrynic acid, bromosulfalein, diethyl maleate, tetraethylthiuram disulfide and curcumin possessed excellent inhibitory effects on purified GSTs in B. minax. Moreover, the pupa showed the highest catalytic capability based on Vmax values for both the CDNB and GSH, which may suggest a potentially higher GSTs detoxification ability in the pupal stage than the other 2 developmental stages.
Copitarsia decolora (Guenée) is an important pest of several crops such in Mexico, Central and South America. In addition, this species is a regulatory concern in the USA. In this work, we investigated the influence of trap design, trap height, and trap color on pheromone trap catches of C. decolora males in cruciferous crops. Additionally, we investigated the seasonal dynamics of C. decolara for 3 yr. The water-trap captured a significantly higher number of males compared to the jug trap and the Scentry® Heliothis trap. There were no significant differences between in the number of males captured by traps positioned at 0.5, 1, and 1.5 m above ground level. There was also no an interaction between trap design and trap height. Green water-traps captured more males than red water-traps, however, the catches of red water-traps were intermediate and not significantly different from those captured by yellow, blue, and brown water-traps. A total of 6,978 C. decolora males were captured during the 3 yr of trapping. The overall distribution of trap captures over the season was unimodal, with a distinctive peak in trap catches occurring between Mar and Apr.
The population dynamics and biology of the gall-inducing insect, Crotonothrips polyalthiae Mound & Nasruddin, and its damage to Polyalthia longifolia Sonn, were studied in Makassar, South Sulawesi, Indonesia, from 15 Aug 2010 to 25 Jul 2011. The average number of thrips per gall, young leaves per plant, and bi-weekly rainfall peaked 3 times during the survey. The average number of living thrips per gall peaked about 4 wk after the peak in the number of young leaves per plant, and this occurred 2 to 4 wk after each rainfall peak. The thrips development time ranged from 17 to 25 d with an average of 20.8 d. Average adult longevity for female and male were 24.3 and 12.2 d, respectively. The number of eggs laid by a female ranged from 11 to 74 with an average of 41.5 eggs. An average of 94.9% of those eggs successfully hatched. One year after the initiation of the experiment, the thrips reduced the plant height and stem circumference by 49 and 37%, respectively, in comparison with the plants that were kept thrips-uninfested by using insecticides. This appears to be the first experimental account of a gall-inducing thrips impeding the growth of a tree or woody plant.
The Asian citrus psyllid, Diaphorina citri Kuwayama, was reported for the first time in Florida in June 1998, and huanglongbing (HLB, citrus greening), vectored by D. citri, was detected in Florida for the first time in Aug 2005. In Florida, the only known HLB pathogen is ‘Candidatus Liberibacter asiaticus’ (Las). After HLB was known to be established in Florida, the psyllid vectors found in regulatory samples from plants for sale were tested for the pathogen by real-time qPCR. Approximately 1,200 regulatory samples were tested between Aug 2005 and Aug 2009. Samples came from venues in 44 of Florida's 67 counties. Most of the samples came from citrus, but about 11% came from Murraya exotica, a popular ornamental plant and close relative of citrus. Approximately 9.7% of the psyllid samples tested were positive for Las. Numbers of samples and proportion of positive samples varied by year and by county.
The citrus trunk borer, Pseudonemorphus versteegi (Ritsema) (Coleoptera: Cerambycidae), is the most destructive pest of citrus in the entire northeastern Himalayan region of India. Adult beetles are stout, large in size, measuring 18.0 to 33.3 mm in length with bluish white elytra and 11-segmented filiform antennae. The antennae are 2.71 and 1.61 times longer than the lengths of the bodies of male and female beetles, respectively. These studies reveal and detail sexual dimorphism characters in adult of Pseudonemorphus versteegi.
This paper presents a survey of the insects that feed on fruits of Psittacanthus Martius (Santalales: Loranthaceae), a hemiparasitic mistletoe genus that infects trees in Brazil and other neotropical countries. The aim of the study was to identify candidate insects for biological control of Psittacanthus mistletoes. Unripe and mature fruits were collected in several localities of Cerrado, bordering South Pantanal, Southwestern Brazil, from 29 Apr 1998 to 30 Jul 2000. A total of 24,710 fruits (54 samples) of Psittacanthus acinarius infecting 15 species from 10 plant families were evaluated. Psittacanthus acinarius (Mart.) was the most abundant and frequent species of mistletoe parasitizing trees in the ecotonal Cerrado-Pantanal. From 24,710 fruits of Psittacanthus acinarius were obtained 1,812 insect larvae including 1,806 Neosilba McAlpine (Diptera: Lonchaeidae) species and 6 Thepytus echelta (Hewitson) (Lepidoptera: Lycaenidae). From these emerged 1,550 Neosilba spp. adults and 6 T. echelta. Neosilba pantanense Strikis was described from this research. Larvae of T. echelta occurred in fruits of P. acinarius parasitizing Cecropia pachystachya Trécul (Urticaceae) and Anadenanthera colubrina (Vellozo) Brenan (Fabaceae). Larvae of Neosilba caused no adverse effects on the germination of infected fruits of Psittacanthus, because they do not eat the embryo or viscin tissues. This differs from the larvae of T. echelta that interrupted the germination of seeds by feeding on those tissues. Thepytus echelta may be a promising insect for the biological control of P. acinarius in the ecotonal Cerrado-Pantanal, although its abundance and frequency were low throughout the sampling period.
The leafhopper assassin bug, Zelus renardii Kolenati, is a natural enemy and stands out among species in the large New World genus Zelus Fabricius (∼60 spp.) by its introduction to and establishment in 3 biogeographic regions. We here present documentation of the distribution and habitat of Z. renardii in its native range in North and Central America and compare it with Z. tetracanthus Stål, a wide-ranging New World congener that apparently has not dispersed outside of its native range. In addition, we document and compare predatory and reproductive behaviors in the 2 species. Zelus renardii is widely distributed in the Western USA and shows a continuous geographic range south to Guatemala; Z. tetracanthus is broadly distributed across North and Central America and also occurs in Brazil. In Riverside County, California, Z. renardii is common in suburban and disturbed habitats in addition to certain natural areas, whereas Z. tetracanthus is usually restricted to natural areas. The behavioral comparison under laboratory conditions indicated that Z. renardii caught prey faster and that feeding duration in this species was shorter than in Z. tetracanthus. The duration of pre-copulatory behaviors in Z. renardii was shorter than in Z. tetracanthus, resulting in a shorter overall mating duration. Based on the higher percentage of egg batches that produced first instars in Z. renardii, this species may establish large populations under adverse conditions faster than Z. tetracanthus. Our observations on distribution and biology contribute toward an understanding of the differences in invasiveness between the 2 species.
KEYWORDS: Bactrocera dorsalis, ecdysone receptor, cloning, Characterization, RT-qPCR, receptor de la ecdisona, clonación, PCR cuantitativa, tiempo real
The 20-hydroxyecdysone (20E) plays a critical role in a series of biological processes, via the ecdysone receptor/USP heterodimeric complex in arthropod. In order to clarify the regulatory mechanism of 20E, we characterized a full-length cDNA encoding a putative ecdysone receptor isoform B1 and named it as BdEcR-B1 in the oriental fruit fly, Bactrocera dorsalis. The BdEcR-B1 gene was 3,111 bp long, with an open reading frame of 2,304 bp, which encoded 767 amino acids with a predicated molecular weight of 83.3 kDa and an isoelectric point of 6.74. Alignment analysis revealed that the deduced protein sequence had 80% identity to EcR-B1 isoforms of various dipteran species, indicating that this gene was highly conserved during the evolution of the Diptera. Phylogenetic analysis suggested that BdEcR-B1 was orthologous to the EcR-B1 proteins identified in other insect species. Quantitative real-time PCR showed that BdEcR-B1 was expressed at all tested developmental stages, and the expression of BdEcR-B1 reached a significantly higher level just prior to the larval-pupa molt stage and in 4-d old pupa than those in other stages. Moreover, the BdEcR-B1 gene much more strongly expressed in gut and Malpighian tubule than those in the trachea and fat body, which suggests that this gene may be involved in tissue-specific function during larval development.
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), ranks among the most important pests of various palm species. The pest originates from South and Southeast Asia, but has expanded its range dramatically since the 1980s. We used ecological niche modeling (ENM) approaches to explore its likely geographic potential. Two techniques, the Genetic Algorithm for Rule-set Prediction (GARP) and a maximum entropy approach (MaxEnt), were used. However, MaxEnt provided more significant results, with all 5 random replicate subsamples having P < 0.002 while GARP models failed to achieve statistical significance in 3 of 5 cases, in which predictions achieved probabilities of 0.07 < P < 0.10. The MaxEnt models predicted successfully the known distribution, including the single North American occurrence point of Laguna Beach, California, and various areas where the pest has been reported in North Africa, southern Europe, Middle East and South and Southeastern Asia. In addition, areas where the pest has not been yet reported were found to be suitable for invasion by RPW in sub-Saharan Africa, southern, central and northern America, Asia, Europe, and Oceania. Highly suitable areas in the United States of America were limited mostly to coastal California and southern Florida, while all Caribbean islands were found highly suitable for establishment and spread of the pest.
Aphids are one of the major challenges in the agricultural pest management programmes. A reliable, quick, accurate and life stage-independent method of identification of vectors such as Aphis gossypii Glover and Myzus persicae (Sulzer) is important with respect to virus transmission, insecticide resistance and biological control. The complex life cycles, significant polymorphism, immature taxonomy and absence of trained manpower make the identification of these pests difficult. On the other hand, molecular identification is not limited by the above factors and can be easily executed by a non-specialist with a little training. Since the mitochondrial cytochrome oxidase-1 (COI) exhibits maternal inherited characteristics and reliable inter-specific variation as compared to other molecular markers, species-specific markers have been developed using existing nucleotide differences in the COI partial sequences of both A. gossypii and M. persicae. These species-specific markers have proved to be adequate for the molecular identification of these species, and to corroborate their morphological identification. Molecular diversity analyses using both mitochondrial and nuclear markers showed that neither A. gossypii nor M. persicae has as much genetic variability as expected. An outcome of this investigation is the development of a technique that is useful for the quick identification of A. gossypii and M. persicae, a critical factor in understanding the epidemiology and management of the potyviruses, and also in facilitating quarantines of these 2 pests.
In Brazil, soybean Glycine max (L.) Merril crops are subjected to incidence of several pests, which are mainly insect species. However, the occurrences of other pest species are growing. In this context, outbreaks of phytophagous mites are becoming more frequent. Nevertheless, records of mites in such crop are available only for Maranhão, Mato Grosso, Minas Gerais and Rio Grande do Sul states. Thus, this work gathers all information published about the diversity of mites found in soybean in Brazil, and also new records of mite species made on samplings taken from the central Cerrado area. In the whole, occurrence of 44 species of plant mites in soybean has been recorded in Brazil. Data from prior studies and the results of this work present the tetranychid Mononychellus planki (McGregor) as the mite species most frequently occurring in the Brazilian soybean crops. A large portion of Phytoseiidae species has occurred in crops from Rio Grande do Sul state. In addition, spontaneous soybean has hosted almost half of the phytoseiid species sampled in Cerrado region. High diversity of Tarsonemidae has been found in the cultivated soybean. More studies about soybean mites are needed to clarify the damage potential of phytophagous mites and the biological role of predatory mites in this crop.
A total of 817 samples (1,094.36 kg) of potential fruit fly (Diptera:Tephritidae) hosts were collected from 70 plant species across 29 families in the state of Amapá, Brazil. Twenty-three of these plant species were infested with tephritid larvae. Twelve species of Anastrepha were recovered in different proportions: Anastrepha striata (82.65%), Anastrepha coronilli (6.63%), Anastrepha obliqua (5.47%), Anastrepha distincta (2.28%), Anastrepha fraterculus (2.10%), Anastrepha parishi (0.30%), Anastrepha leptozona (0.22%), Anastrepha pickeli (0.11%), Anastrepha antunesi (0.07%), Anastrepha serpentina (0.07%), Anastrepha sororcula (0.06%), and Anastrepha zenildae (0.04%). Anastrepha striata was recorded from the greatest number of hosts (14 plant species in 8 families). The periods of occurrence of different Anastrepha species were variable, but we observed that A. striata was constantly present in Psidium guajava and sporadically present in fruits of other hosts. The fruits of wild plant species showed the highest rates of infestation by fruit flies with Pouteria sp.1 presenting a rate of (434.29 puparia/kg), followed by Manihot sp. (130.43 puparia/kg) and Inga sp.5 (120.62 puparia/kg). All of parasitoids recovered from collection of infested fruit were Braconidae: Doryctobracon areolatus (95.86%), Opius bellus (2.76%), Asobara anastrephae (1.07%), and Utetes anastrephae (0.31%). The highest percentage of parasitism (8.45%) was observed in samples of Spondias mombin.
The agave snout weevil Scyphophorus acupunctatus Gyllenhal (Coleoptera: Curculionidae) is an ubiquitous insect and the main pest of blue tequila agave, Agave tequilana Weber, and other agaves. This study reports the repellent effect of the hydroethanolic extract of the castor oil plant, Ricinus communis L. (Euphorbiaceae) wild and ‘Mirante’ cultivar on the adult's behavior. Females and males visited untreated agave tissue more frequently than agave tissue treated with R. communis extracts. Insects visited agaves treated with seed extracts more frequently than those with leave extracts; therefore leaves of R. communis deserve a closer look to identify their properties and gauge their potential use as a repellent.
A survey of insect visitors on flowers of Serenoa repens (saw palmetto) at a Florida site, the Archbold Biological Station, showed how nectar and pollen resources of a plant species can contribute to taxonomic diversity and ecological complexity. A list of 311 species of flower visitors was dominated by Hymenoptera (121 spp.), Diptera (117 spp.), and Coleoptera (52 spp.). Of 228 species whose diets are known, 158 are predators, 47 are phytophagous, and 44 are decomposers. Many species that visited S. repens flowers also visited flowers of other species at the Archbold Biological Station. The total number of known insect-flower relationships that include S. repens is 2,029. There is no evidence of oligolectic species that are dependent on saw palmetto flowers. This study further emphasizes the ecological importance and conservation value of S. repens.
The paper describes cytogenetic observations of Pachytodes erraticus (Dalman 1817) for the first time. Also presented are the distribution of this species in Turkey with a map and in the world, chorotype classification of the species, photos of male genitalia, the mitotic metaphase stage and karyogram. The results indicate that the chromosome number is 2n = 18.
Ants in the genus Dinoponera (Hymenoptera: Formicidae: Ponerinae) are among the largest sized Formicidae of the World. In Brazil Dinoponera has an allopatric distribution, and several species occur in threatened biomes. We characterized karyotypes of the following 4 species: Dinoponera australis Emery, Dinoponera gigantea Perty, Dinoponera lucida Emery, and Dinoponera quadriceps Santschi. Karyotype analysis found that all 4 species have high numbers of small-sized chromosomes (D. australis, 2n = 114; D. gigantea, 2n = 82; D.lucida, 2n = 118/120; D. quadriceps, 2n = 92). A moderate variation in chromosome number was observed among the 4 species, which suggests the occurrence of chromosome rearrangements during karyotype evolution in Dinoponera. An exclusive AMT chromosome pair was found to occur in all Dinoponera species studied thus far, which we conclude is a probable synapomorphy in Dinoponera.
We studied the effects of crude extracts and fractions of Azadirachta indica, Melia azedarach, Toona ciliata and Trichilia pallida on both egg and nymph mortality and embryonic development of Bemisia tabaci B biotype, using tomato plants grown in a greenhouse. Next, we studied the host selection behavioral effects on the adult whitefly under laboratory conditions. The dichloromethane extracts from all plant species and fractions of the extract from branches of T. pallida (EBTPD) and of the extract from leaves of T. ciliata (ELTCD) in dichloromethane caused mortality of nymphs, but neither affected egg viability. However, the branches of the ethanolic extract of A.indica increased the period of embryonic development of the B. tabaci. In addition, the tomato leaflets treated with the fraction of ELTCD dichloromethane (0.28%) were the least preferred by adults, reducing the number of insects resting on the tomato leaflets. The ELTCD methanol and EBTPD dichloromethane fractions inhibited B. tabaci oviposition. Thus, Meliaceae derivatives can contribute to the reduction of the B. tabaci population. The susceptibility of the B. tabaci to Meliaceae derivatives and the relevant behavioral changes of this pest are discussed.
The fall armyworm (FAW), Spodoptera frugiperda is the main corn pest in Latin America. As an alternative to chemical insecticide applications, one isolate of Spodoptera frugiperda nucleopolyhedrovirus from soil of an experimental field in Saltillo, Coahuila, Mexico was evaluated. Egg masses of the pest were superficially inoculated by the immersion method, with different nucleopolyhedrovirus concentrations expressed as occlusion bodies/mL (OBs/mL). Artificial diet was also inoculated with different viral concentrations and used to conduct bioassays on first to sixth instar larvae to determine the number of OBs produced per larva. Another assay was performed under greenhouse conditions to evaluate four baculovirus formulations. The use of the immersion method on egg masses caused the highest mortality rates recorded in the larval stage (74.37%), mainly in the first instar, with 64.05% mortality. The number of OBs produced per larva ranged from 5.15 × 106 to 2.3 × 109, where fifth and sixth instar larvae produced the highest amount. OBs produced by weight unit of larva were registered and higher values were found in the last larval instars. In the baculovirus formulations tested under greenhouse conditions, the mixture with maize flour and starch resulted in significantly increased mortality rates.
Tick-borne relapsing fever is an acute infectious disease transmitted to humans by Ornithodoros tholozani, and it is a notifiable disease in Kurdistan Province, Iran. This cross-sectional survey was carried out from 2000 to 2004. The main aim of this study was to ascertain the prevalence of tick-borne relapsing fever in Kurdistan Province. The prevalence and incidence of tick-borne relapsing fever was monitored by daily clinical surveillance and by thin and thick blood smears of individuals with a fever. In confirmed cases, there was febrile illness, and spirochetes were identified on smears of peripheral blood. A field survey on presence of Ornithodoros tholozani in Bijar county villages was carried out and investigated for the detection of Borrelia spp. A total number of 97 cases including 88 cases from rural areas and 9 cases from urban areas were recorded over 5 years. Epidemiological studies on O. tholozani ticks collected from the several locations of villages indicated that 2 of the 20 studied villages (10%) were infested by the vector tick, O. tholozani. The presence of O. tholozani in most villages investigated and its infection rate suggest that tick-borne relapsing fever is a common cause of fever in most rural areas of Kurdistan Province. Results of the study demonstrate that tick-borne relapsing fever is under-recognized and under-reported, and the pathogens may be wrongly identified as malaria parasites. The study showed that tick-borne relapsing fever should be considered as an important public health priority in the study area.
When one thinks of a pioneer, thoughts generally travel to the Old West where brave men and women explored unchartered territory, fueled by their dreams of creating a prosperous life for themselves and their families. They faced hardships and tribulations, but never lost sight of their dreams. Same can be said for a more recent pioneer, Dempsey R. Sapp Sr. Known as a founding father of the pest control industry, by following his dreams he paved the way for future pest control professionals. Like other pioneers, he encountered adversity, yet persevered and created a legacy not only for his children, but for all those interested in entomology and pest control. This is his story.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere