Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Clonal cell lines have been established from vaginae of prepubertal female p53−/− mice. Because the mouse vagina has a dual origin (the cranial three-fifths derived from the Müllerian duct and the caudal two-fifths derived from the urogenital sinus), both parts were separately subjected to cloning. Sixteen epithelial and two fibroblastic cell lines were established from the cranial three-fifths (Müllerian vagina group), and four epithelial and three fibroblastic cell lines were established from the caudal two-fifths (sinus vagina group). They were maintained in Dulbecco's modified Eagle medium and Ham's nutrient mixture F-12 containing 10% fetal calf serum and 17β-estradiol at 10−8M. Two cell lines (one epithelial and one fibroblastic) were examined using soft agar assay, but no colonies were formed. The doubling time of the cell lines was approximately 24 h, and all of them divided more than 200 times without crisis, suggesting that they were immortalized. All epithelial cell lines expressed cytokeratin 8. However, the epithelial cell lines expressed cytokeratin 14 and cytokeratin 10 when exposed to medium containing different concentrations of Ca2 . Fibroblastic cell lines expressed vimentin. All epithelial and fibroblastic cell lines expressed estrogen receptor-α protein. This is the first successful establishment of clonal cell lines from the normal mouse vagina, and these lines may provide good models in vitro of the vagina for the study of the mechanism of estrogen action.
The objectives of this study were to optimize a sensitive high-performance liquid chromatography (HPLC) method for fatty acid (FA) analysis for the quantification of polyunsaturated FAs (PUFAs) in cell lipid extracts and to analyze the lipid and FA patterns of three cell lines used in blood–brain barrier (BBB) models: RBE4, ECV304, and C6. Thin-layer chromatographic analysis revealed differences in the phosphatidylcholine–phosphatidylethanolamine (PC:PE) ratios and the triglyceride (TG) content. The PC:PE ratio was <1 for RBE4 cells but >1 for ECV304 and C6 cells. ECV304 cells displayed up to 9% TG depending on culture time, whereas the other cell lines contained about 1% TG. The percentages of docosahexaenoic acid were 9.4 ± 1.7% of the unsaturated FAs in RBE4 cells (n = 5; 4 d in culture; 9.9% after 10 d), 8.1 ± 2.0% in ECV304 cells (n = 11; 10 to 14 d), and 6.7 ± 0.6% in C6 cells (n = 6; 10 to 14 d) and were close to the published values for rat brain microvascular endothelium. The percentage of arachidonic acid (C20:4) was about half that in vivo. ECV304 cells contained the highest fraction of C20:4, 17.8 ± 2.2%; RBE4 cells contained 11.6 ± 2.4%; and C6 cells 15.8 ± 1.9%. It is concluded that a sensitive HPLC method for FAs is now optimized for the analysis of long-chain PUFAs. The results provide a useful framework for studies on the effects of lipid modulation and give reference information for the development of further BBB models.
Lipids of brain tissue and brain microvascular endothelial cells contain high proportions of long-chain polyunsaturated fatty acids (long PUFAs). The blood–brain barrier (BBB) is formed by the brain endothelial cells under the inductive influence of brain cells, especially perivascular glia, and coculture of endothelial cells and glial cells has been used to examine this induction. The objective of this study was to investigate whether C6 glioma cells are able to influence the lipid composition and shift the fatty acid (FA) patterns of the BBB model cell lines RBE4 and ECV304 toward the in vivo situation. Lipid classes of the three cell lines were analyzed by thin-layer chromatography and lipid FA patterns by high-performance liquid chromatography. Only ECV304 cells showed altered lipid composition in coculture with C6 cells. The fractions of triglycerides and cholesteryl esters (depending on the support filter) were about twice as high in coculture as when the cells were grown alone. Triglyceride fractions reached 13 to 15% of total lipids in coculture. The three cell lines showed an increase in the percentage of long PUFAs with respect to unsaturated FAs, mainly because of an increase in the percentages of arachidonic acid, all cis-7,10,13,16-docosatetraenoic acid, and all cis-7,10,13,16,19-docosapentaenoic acid. It is concluded that glioma C6 cells are able to induce a more in vivo–like FA pattern in BBB cell culture models. However, changes were not significant for the individual PUFAs, and their levels did not reach in vivo values.
Antibacterial proteins are produced in the reproductive tracts of some insect species. The advent of a pupal ovarian cell line of the lepidopteran Galleria mellonella offered an opportunity for exploring the use of ovarian tissue culture to induce antimicrobial proteins in lieu of the larvae. The ovarian cell growth rates and cell yields were maximized by adjusting Grace's medium to pH 6.5, adding 15% (v/v) qualified heat-inactivated fetal calf serum, and lowering the sucrose concentration to 9.3 g/L. Five cell forms and biochemical profiles of the collective cell types were analyzed throughout the culture growth cycle. The final modified culture medium did not affect morphogenesis, whereas it increased the culture growth rate by 50% and the final cell yield threefold. The molting and immunoprotein-inducing hormone, 20-hydroxyecdysone, increased culture growth rate and altered the levels of cell types A and D. Neither 20-hydroxyecdysone nor the larval immunizing agents, apolipophorin-III or Bacillus subtilis, in combination or alone, induced antibacterial activity. The bacterium did induce immunity in both larval and adult stages.
Availability of the complete sequence of the human genome and sequence homology analysis has accelerated new protein discovery and clues to protein function. Protein–protein interaction cloning suggests multisubunit complexes and pathways. Here, we combine these molecular approaches with cultured cell colocalization analysis to suggest a novel complex and a pathway that integrate the mitochondrial location and the microtubular cytoskeleton with chromosome remodeling, apoptosis, and tumor suppression based on a novel leucine-rich pentatricopeptide repeat-motif–containing protein (LRPPRC) that copurified with the fibroblast growth factor receptor complex. One round of interaction cloning and sequence homology analysis defined a primary LRPPRC complex with novel subunits cat eye syndrome chromosome region candidate 2 (CECR2), ubiquitously expressed transcript (UXT), and chromosome 19 open reading frames 5 (C19ORF5) but still of unknown function. Immuno, deoxyribonucleic acid (DNA), and green fluorescent protein (GFP) tag colocalization analyses revealed that LRPPRC appears in both cytosol and nuclei of cultured cells, colocalizes with mitochondria and β-tubulin rather than with α-actin in the cytosol of interphase cells, and exhibits phase-dependent organization around separating chromosomes in mitotic cells. GFP–tagged CECR2B was strictly nuclear and colocalized with condensed DNA in apoptotic cells. GFP–tagged UXT and GFP–tagged C19ORF5 appeared in both cytosol and nuclei and colocalized with LRPPRC and β-tubulin. Cells exhibiting nuclear C19ORF5 were apoptotic. Screening for interactive substrates with the primary LRPPRC substrates in the human liver complementary DNA library revealed that CECR2B interacted with chromatin-associated TFIID-associated protein TAFII30 and ribonucleic acid splicing factor SRP40, UXT bridged to CBP/p300–binding factor CITED2 and kinetochore-associated factor BUB3, and C19ORF5 complexed with mitochondria-associated NADH dehydrogenase I and cytochrome c oxidase I. C19ORF5 also interacted with RASSF1, providing a bridge to apoptosis and tumor suppression.
Estrogens upregulate estrogen receptor (ER) and progesterone receptor (PR) gene expression in endometrium immediately before ovulation to prepare it for nurturing embryos. Most in vitro model systems have lost the ability to upregulate expression of the ER gene in response to estradiol (E2) or the ability to express the ER gene at all. Here, we used explant cultures from control and E2-treated ewes and assessed expression of four genes (ER, PR, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], and cyclophilin [CYC] genes) that are upregulated by E2 in vivo on Northern blots. In cultures from control and E2-treated ewes, ER and PR messenger ribonucleic acid (mRNA) levels dropped significantly during 24 h of culture in the absence of E2. Glyceraldehyde 3-phosphate dehydrogenase mRNA levels increased 300% in explants from control ewes to match the higher levels in the endometrium of the E2-treated ewe (in vivo and in explant culture). The only effect of E2 in the explant cultures was to prevent the decrease in PR mRNA. The new selective ER modulator, EM-800 (EM), decreased ER and PR mRNA levels in explants from control ewes but upregulated GAPDH and CYC mRNA levels. The EM treatment in vitro mimicked that of E2 by increasing the half-life of ER mRNA in endometrial explants. These data illustrate distinct, gene-specific effects of the explant culture process, E2, and EM on the expression of endometrial genes.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere