Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
A cloned cell line that spontaneously polarizes in standard glucose-containing media was derived from a single cell of the adenocarcinoma cell line HT-29. The cloned line, designated HT-29/cl.f8, has remained stable over 2 yr in culture, maintained high transepithelial resistance (300 ohm cm2 or higher), and correctly sorted influenza virus and vesicular stomatitis virus to apical or basolateral domains, respectively. The newly cloned cells also displayed apical microvilli, tight junctions, and desmosomes, the morphological characteristics of mature epithelia. The cloned HT-29/cl.f8 cells function as epithelial enterocytes as shown by the apical expression of intestinal alkaline phosphatase, the expression of vimentin and cytokeratin, and lack of expression of mucin. We propose that the newly cloned HT-29/cl.f8 cells offer a viable alternative for studies of enterocyte function that will readily yield interpretable data not complicated by cell alterations due to the presence of drugs or chemicals that induce differentiation.
Primary airway epithelial cell cultures can provide a faithful representation of the in vivo airway while allowing for a controlled nutrient source and isolation from other tissues or immune cells. The methods used have significant differences based on tissue source, cell isolation, culture conditions, and assessment of culture purity. We modified and optimized a method for generating tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function. Soon after initial plating, the epithelial cells reached a high transepithelial resistance and formed tight junctions. The cells differentiated into a heterogeneous, multicellular culture containing ciliated, secretory, and basal cells after culture at an air–liquid interface (ALI). The secretory cell populations initially consisted of MUC5AC-positive goblet cells and MUC5AC/CCSP double-positive cells, but the makeup changed to predominantly Clara cell secretory protein (CCSP)–positive Clara cells after 14 d. The ciliated cell populations differentiated rapidly after ALI, as judged by the appearance of β tubulin IV–positive cells. The cultures produced mucus, CCSP, and trypsin-like proteases and were capable of wound repair as judged by increased expression of matrilysin. Our method provides an efficient, high-yield protocol for producing differentiated hamster tracheal epithelial cells that can be used for a variety of in vitro studies including tracheal cell differentiation, airway disease mechanisms, and pathogen–host interactions.
Selection for resistance against Bacillus thuringiensis (Bt) Cry1Ac10 in the Trichoplusia ni (Hübner) cell line BTI-TN-5B1-4 (TnH5) was tested, and the development of resistance in the selected cells was like a S-form curve. Monitoring at the Cry1Ac10 50th challenge, the resistance ratio was 1, 294-fold as many as that of initial cells. But the resistance to Cry1Ac10 declined gradually when the selection was relaxed. The resistance declined rapidly at the low level of resistance and slowly at the high level of resistance. This resistant cell had high resistance to all the tested solubilized trypsin–treated mixture of crystal multitoxins of B. thuringiensis subsp. aizawai GC-91, an engineering bacterium of Bt, B. thuringiensis subsp. aizawai HD-133 and B. thuringiensis subsp. kurstaki HD-1, and low cross-resistance (19.7-fold) to activated Cry1C. Both N-acetyl-d-galactosamine (GalNAc) and tunicamycin did not inhibit the toxicity of Cry1Ac10 to the susceptible TnH5 cells. Comparison of the total proteins of the selected resistant cells with that of the nonselected susceptible cells by two-dimensional electrophoresis analysis showed that were obvious differences among the 11 protein expressions. These results strongly suggest that there exists an unknown mechanism of resistance in the cell line that was different from the reported mechanisms in insects.
Five different immortalized transgenic hepatocyte cell lines derived from mice were investigated with respect to their potential to maintain the physiological properties of primary hepatocytes using chemically defined medium. This research completes a previous study by Klocke and coworkers in 2002, using gene expression analysis of the same cell lines by the respective physiological analysis for investigating the hepatocyte-like function. Three transgenic cell lines harboring a fusion gene derivative (construct 202) consisting of the complete SV40 early region, including the coding sequences for the transforming large and small tumor antigens, placed under the control of the murine metallothioneine 1-promotor/ enhancer element, showed a hepatocyte-like function and physiology. They grew as a monolayer with a polygonal cell shape, consumed lactate, and secreted albumin at a cell-specific rate of 1.5 pg/h, which is in the range of primary hepatocytes. In addition, the potential of detoxifying ammonium could be maintained. Ammonium was metabolized and urea was produced and released into the medium. A complete urea cycle could be determined. A cell line established from neonatal transgenic mice and expressing a secretory variant of the human epidermal growth factor (IgEGF) under the control of the albumin promoter was characterized by an incomplete urea cycle. Another cell line isolated from the liver of homozygote neonatal p53-knockout mice showed no hepatocyte-specific functions but only properties of continuous cell lines. Specific nucleoside triphosphate (NTP) and uridine (U) ratios were used to characterize the differentiation status of the particular cell lines. A low NTP–U value was found for the three cell lines containing construct 202, which was identical to that observed for primary hepatocytes. In contrast, the cell line harvested from the liver of homozygote neonatal p53-knockout mice presented a NTP–U ratio characteristic for continuous cell lines. This study demonstrates that the four transgenic and the p53-knockout hepatocyte-derived cell lines can be used as models for investigating the conservation of tissue-specific functions in immortalized cells.
Precise paracrine cross-talk between the embryo and the endometrium is essential for the establishment of a successful pregnancy. Previous studies have demonstrated that the expression of interleukin-8 (IL-8) in the endometrium is enhanced during the late-secretory phase and early pregnancy. Furthermore, IL-8 receptor (IL-8R) expression has been detected in trophoblast cells of the developing embryo. To clarify the roles of IL-8 in the endometrium–embryo interactions, the effects of IL-8 on hormone secretion by trophoblast cells were studied using the BeWo trophoblast cell line that retains hormone-secreting properties of normal trophoblast cells. Using reverse transcription–polymerase chain reaction, we found that IL-8R messenger ribonucleic acid (mRNA) was expressed in BeWo cells. The levels of IL-8R mRNA and protein expression in BeWo cells were similar to those in primary first-trimester trophoblast cells. Progesterone (P4) secretion of BeWo cells was comparable with that of first-trimester trophoblast cells but higher than that of third-trimester trophoblast cells. Treatment of BeWo cells with recombinant human IL-8 (rhIL-8) had no effect on cell proliferation, as determined by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Interestingly, secretion of P4, but not human chorionic gonadotropin, from cultured BeWo cells was significantly enhanced when the cells were incubated with rhIL-8. Our results demonstrate that IL-8 may play an important role in the endometrium–embryo interactions by stimulating trophoblast secretion of P4 for maintenance of a successful pregnancy.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere