Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Assessment of a new chemical entity for cyto-chrome P450 (CYP) enzyme induction at an early stage in discovery is crucial to prevent potential drug–drug interactions. CYP3A, the most abundant CYP isoform in the liver, metabolizes approximately 50% of drugs currently on the market and is also a highly inducible enzyme. The use of both rat and human hepatocyte culture for the prediction of in vivo CYP3A induction has become refined and validated and is considered a standard in vitro model. The current evaluation of CYP3A enzyme induction involves the use of substrates requiring subsequent analysis of metabolites by high-performance liquid chromatography/mass spectrometry, which adds considerable time and cost. In the present study, we describe the use of a novel luminogenic substrate, luciferin-6′-pentafluoro-benzyl ether (PFBE), which allows for a fast and selective measurement of CYP3A enzyme induction in cultured rat hepatocytes. The extent of induction was evaluated using cells treated for 3 d with the prototypical inducers, dexamethasone, phenobarbital, and pregnenolone 16 alpha-carbonitrile (PCN). Enzyme activity was measured in the treated cells either by the depentafluorobenzylation of luciferin-PFBE or the testosterone 6-β-hydroxylation. Using both methods, dexamethasone and PCN-treated cells exhibited strong CYP3A activity, whereas phenobarbital treatment resulted in a weak response. The fold induction varied between both methods, but this variability can be controlled by normalizing data from each treatment to a positive control. The results indicate that luciferin-PFBE is an attractive alternative to the use of conventional substrate, testosterone, providing a sensitive, robust, and rapid method compatible with the multiwell plate format for the assessment of CYP3A induction.
The signals for epidermal differentiation and barrier formation are largely unknown. One possible signal is dehydration or osmotic stress. To test this hypothesis, we investigated the effects of osmotic stress on markers of differentiation of normal human keratinocytes in culture. Hyperosmotic stress treatment of normal human keratino-cyte cultures by elevated sorbitol concentrations was observed to induce markers of terminal differentiation. Sorbitol was added to keratinocyte media at 50, 100, 200, and 300 mM final concentration. These concentrations of sorbitol induce a dehydration effect or osmotic stress on the keratinocytes. These sorbitol treatments increased the levels of messenger RNA for the differentiation markers involucrin, transglutaminase, and filaggrin as measured by reverse transcription-polymerase chain reaction. Keratin K1 and K10 and involucrin protein levels were also increased in normal human keratinocyte cultures exposed to increasing osmotic stress. These observations suggest that keratino-cytes in the epidermis may use dehydration as a sign to trigger the differentiation of the skin barrier.
Bone marrow stromal cells (BMSCs) isolated from humans and rodents have been shown to generate neural cells under specific culture conditions and after transplantation in the central nervous system. The apparent plasticity of BMSCs has therefore been a target of intensive research in attempt to develop a novel therapy for neurological diseases. Canines sustain neurological disorders (e.g., traumatic spinal cord injury) that closely mirror pathology of those in humans. Therefore, we evaluated neural differentiation properties of canine BMSCs to provide insights into basic characterization of these cells for future neurotransplantation trials in canine patients with neurological disorders. We demonstrate that canine BMSCs form spherical cellular aggregates on anti-adhesive culture substrate in serum-free culture media, which morphologically and phenotypically resemble spherical aggregates of neural progenitor cells, so-called neurospheres. Upon dissociation and subculture on adhesive substrate, canine BMSCs express neuronal (β -tubulin) and glial (GFAP, A2B5, and CNPase) markers. Formation of spherical aggregates appears to be a critical preceding process for some of the glial marker expression (CNPase and A2B5). However, expression of more mature neuronal (MAP2) and glial (MBP) markers could not be induced with the protocol used in this study. We suggest that induction of canine BMSCs into cells with neural progenitor cell characteristics is possible and that these cells may have the potential for future cellular therapy for neurological disorders.
The p38α mitogen-activated protein kinase (MAPK) is essential in controlling the production of many proinflammtory cytokines, and its specific inhibitor can effectively block their production for treating human diseases. To effectively identify highly specific p38α inhibitors in vivo, we developed an ex vivo mouse blood cell-based assay by flow cytometry to measure the intracellular p38α kinase activation. We first attempted to identify the individual blood cell population in which the p38α kinase pathway is highly expressed and activated. Based on CD11b, combined with Ly-6G cell surface expression, we identified two distinct subsets of non-neutrophilic myeloid cells, CD11bMedLy-6G− and CD11bLoLy-6G−, and characterized them as monocytes and natural killer (NK) cells, respectively. Then, we demonstrated that only monocytes, not NK cells, expressed a high level of p38α kinase, which was rapidly activated by anisomycin stimulation as evidenced by the phosphorylation of both p38 and its substrate, MAPKAP-K2 (MK2). Finally, the p38α kinase pathway activation in monocytes was fully inhibited by a highly selective p38α kinase inhibitor dose-dependently in vitro and in vivo. In conclusion, we demonstrated an effective method for separating blood monocytes from other cells and for detecting the expression level and activation of the p38α kinase pathway in monocytes, which provided a new approach for the rapid identification of specific p38α inhibitors.
In vitro production of the obligate intracellular bacterium, Wolbachia pipientis, is essential to its manipulation as a genetic tool to spread transgenes within vector populations. We have adapted the Wolbachia-infected Aa23 Aedes albopictus mosquito cell line to Eagle's minimal medium, supplemented with nonessential amino acids, glutamine, and 20% fetal bovine serum. When plated at low densities, Aa23E cells grew as patchy monolayers, comprised of non-contiguous clusters of cells that gave rise to solid clumps of tightly adherent cells. Multicellular clumps eventually detached from the substrate and floated freely in the medium. Removal of Wolbachia by treatment with tetracycline did not alter the cytological properties of the host cells, which had a population doubling time of 4–5 d. The presence of Wolbachia was monitored by Giemsa staining of cytological preparations, polymerase chain reaction (PCR) amplification of Wolbachia 16S ribosomal DNA, and by simultaneous PCR amplification of ribosomal protein genes from Wolbachia and mosquito host cell genomes. Wolbachia morphology was pleomorphic, and Wolbachia DNA persisted in the culture medium for several weeks after degradation of PCR-amplifiable host cell DNA.
We are attempting to recreate a stretch reflex circuit on a patterned Bio-MEMS (bio-microelectromechanical systems) chip with deflecting micro-cantilevers. The first steps to recreate this system is to be able to grow individual components of the circuit (sensory neuron, motoneuron, skeletal muscle, and muscle spindle) on a patternable, synthetic substrate coating the MEMS device. Sensory neurons represent the afferent portion of the stretch reflex arc and also play a significant role in transmitting the signal from the muscle spindle to the spinal cord motoneurons. We have utilized a synthetic silane substrate N-1[3-(trimethoxysilyl) propyl) diethylenetriamine (DETA) on which to grow and pattern the cells. DETA forms a self-assembled monolayer on a variety of silicon substrates, including glass, and can be patterned using photolithography. In this paper, we have evaluated the growth of sensory neurons on this synthetic silane substrate. We have investigated the immunocytochemical and electrophysiological properties of the sensory neurons on DETA and compared the resultant properties with a biological control substrate (ornithine/laminin). Immunocytochemical studies revealed the survival and growth of all three subtypes of sensory neurons: trkA, trkB, and trkC on both surfaces. Furthermore, whole-cell patch clamp recordings were used to study the electrophysiological properties of the sensory neurons on the two surfaces. There were no significant differences in the electrical properties of the neurons grown on either surface. This is the first study analyzing the immunocytochemical and electrophysiological properties of sensory neurons grown long-term in a completely defined environment and on a nonbiological substrate.
Mesenchymal stem cells (MSCs) are capable of self-renewing and differentiating into multiple tissues; they are expected to become a source of cells for regenerative therapy. Compared to allogeneic MSCs, autologous MSCs from patients needing cell-based therapy may be an ideal alternative stem cell source. However, characterizations of MSCs from a disease state remains extremely limited. Therefore, we have isolated and characterized MSCs from Parkinson's disease (PD) patients and compared them with MSCs derived from normal adult bone marrow. Our results show that PD-derived MSCs are similar to normal MSCs in phenotype, morphology, and multidifferentiation capacity. Moreover, PD-derived MSCs are capable of differentiating into neurons in a specific medium with up to 30% having the characteristics of dopamine cells. At last, PD-derived MSCs could inhibit T-lymphocyte proliferation induced by mitogens. These findings indicate that MSCs derived from PD patients' bone marrow may be a promising cell type for cellular therapy and somatic gene therapy applications.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere