Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The kinds of data obtained in micropropagation studies are very often problematic, since they do not follow continuous distribution and observations through culture vessels complicate measurement. Accordingly, standard analyses are often used, leading to misinterpretation of results. In this paper, we present a study of Viburnum opulus micropropagation using planned contrasts and fitting regression models in generalized linear models as an alternative statistical analysis of micropropagation results, and compare the results with that of traditional ANOVA. The advantages and possibilities of these alternative data analyses in plant tissue culture are discussed.
Isolation of zygotic embryos from seeds and their culture in a defined medium, initiated by Hannig in 1904, has proved to be a promising method to study the factors that control growth and differentiation of embryos. Using this technique, several investigations have focused on the carbohydrate and nitrogen nutrition during germination of cultured seed embryos and on the effects of plant hormones on their morphogenesis. Culture of immature embryos leads to their germination into weak seedlings, skipping the later stages of embryogenesis, by a process known as precocious germination. Progressively smaller embryos have been cultured by supplementation of the medium with coconut milk or hormonal additives or by osmotic adjustment of the medium by high concentrations of sucrose or mannitol. Although methods have not been developed for large-scale isolation and culture of zygotes, zygotes of maize isolated from embryo sacs and those obtained by in vitro fertilization have been grown in culture into full-term embryos. Embryo culture techniques are widely used to rescue embryos from seeds of wide crosses which usually abort and to overcome dormancy of recalcitrant seeds.
A new utilization of the biolistic gun was developed for the direct introduction of nitrogen-fixing bacteria (Azotobacter vinelandii) into strawberry (Fragaria×ananassa) tissues. This was the first case of using living bacteria as microprojectiles for the bombardment of plant tissues. Bacterial cells, adhered to tungsten particles, were accelerated by a nitrogen-powered device, and delivered into the target leaves and regenerating shoot meristems. The presence of bacteria in the developing strawberry callus tissues and regenerating plants was detected by microscopy, acetylene reduction assay, and selective polymerase chain reaction. Practically, the elaborated method proved to be suitable for the establishment of artificial intercellular associations between nitrogen-fixing bacteria and higher plants.
Axillary and terminal buds from suckers of Ananas comosus cv. Phuket were established on Murashige and Tucker-based (MT) medium with 2.0 mg l−1 (9.8 μM) indolebutyric acid, 2.0 mg l−1 (10.74 μM) naphthaleneacetic acid, and 2.0 mg l−1 (9.29 μM) kinetin, followed by multiplication on Murashige and Skoog-based (MS) medium containing 2.0 mg l−1 (8.87 μM) benzyladenine (BA) to provide a continuous supply of axenic shoots. Leaves, excised from such cultured shoots, produced adventitious shoots from their bases when these explants were cultured on MS medium containing 0.5 mg l−1 (2.26 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 mg l−1 (8.87 μM) BA. Embryogenic callus was produced when leaf explants were cultured on MS medium with 3.0 mg l−1 (12.42 μM) 4-amino-3,5,6-trichloropicolinic acid (picloram). Somatic embryos developed into shoots following transfer of embryogenic tissues to MS medium with 1.0 mg l−1 (4.44 μM) BA. Cell suspensions, initiated by transfer of embryogenic callus to liquid MS medium with 1.0 mg l−1 (4.14 μM) picloram or 1.0 mg l−1 (4.52 μM) 2,4-D, also regenerated shoots by somatic embryogenesis, on transfer of cells to semisolid MS medium with 1.0 mg l−1 (4.44 μM) BA. All regenerated shoots rooted on growth regulator-free MS medium, prior to ex vitro acclimation and transfer to the glasshouse. These studies provide a baseline for propagation, conservation, and genetic manipulation of elite pineapple germplasms.
Factors affecting in vitro shoot production and regeneration of Cercis yunnanensis Hu et Cheng were investigated by comparing various growth regulators and explant types. For optimum shoot production from axillary buds, Murashige and Skoog (MS) media containing 6-benzyladenine, either alone or in combination with a low concentration of thidiazuron, resulted in the greatest number of shoots formed per explant (>3). Explants (2 mm long) containing one axillary bud placed in direct contact with the medium yielded the most shoots per bud (1.6) when grown on growth regulator-free medium. Root formation on 70–80% of shoot explants was accomplished using either indole-3-butyric acid or α-naphthaleneacetic acid in the medium, with significantly more roots formed on explants possessing an apical bud than those without the bud. Direct shoot organogenesis from leaf explants occurred on MS medium containing 10–30 μM thidiazuron, with up to 42% of leaf explants producing shoots.
An efficient in vitro plant regeneration system from cotyledons was established in tetraploid Isatis indigotica Fort. Factors influencing shoot regeneration from cotyledons, including culture medium type, combinations of plant growth regulators, and sucrose concentrations in the medium, as well as illumination were investigated. Murashige and Skoog's (MS) medium was found to be best for promoting shoot regeneration, followed by Gamborg's B5 and White's medium. The highest shoot regeneration frequency was achieved from cotyledons cultured on MS medium supplemented with 2.0 mg l−1 (8.9 μM) 6-benzyladenine and 1.0 mg l−1 (5.4 μM) α-naphthaleneacetic acid (NAA), with 97.9% regeneration, associated with a high number of multiple shoots developed per explant (8.6 shoots per explant). A sucrose concentration of 3% present in the medium and light conditions were beneficial for shoot regeneration. The shoots developed were rooted in a half-strength MS medium supplemented with 1.0 mg l−1 (5.4 μM) NAA and successfully transplanted in soil in pots with over 85% survival. The establishment of an efficient plant regeneration procedure from cotyledons provides a basis for the rapid in vitro multiplication of tetraploid Isatis indigotica Fort., one of the most extensively used medicinal plants in China currently under great shortage.
We have developed a highly efficient two-stage protocol for induction of multiple shoots from single node in vitro shoot tip explants of Decalepis hamiltonii. It was found that phenylacetic acid (PAA) had a synergistic effect on shoot multiplication when treated with N6-benzyladenine (BA). This protocol used PAA for both multiple shoot induction from nodal explants, elongation of primary shoots, and initiation of adventitious shoot formation from primary shoots. Murashige and Skoog medium containing BA (2.22–31.08 μM) and α-naphthaleneacetic acid (0.27–10.74 μM) or PAA (7.34–36.71 μM) was used to initiate shoot formation from nodal explants. The maximum number of shoots per culture was produced on a medium containing 31.08 μM BA and 14.68 μM PAA, while the longest shoot length and nodes were obtained on medium containing 22.2 μM BA and 14.68 μM PAA. Shoots subcultured on MS medium containing 22.2 μM BA and 14.68 μM PAA elongated along with secondary shoot formation. The shoots were rooted on medium containing 9.8 μM indole-3-butyric acid. The plantlets were acclimatized in soil with an 80–90% survival rate under field conditions.
Callus induction was observed from hypocotyl, root, and cotyledonary leaf segments, grown on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KN). Maximum callusing (100%) was obtained from root and cotyledonary leaf segments grown on MS medium supplemented with a combination of 2 mg l−1 (9.1 μM) 2,4-D and 0.2 mg l−1 (0.9 μM) KN. The calluses, when subcultured in the same medium, showed profuse callusing. However, these calluses remained recalcitrant to regenerate regardless of the quality and combinations of plant growth regulators in the nutrient pool. When hypocotyl segments were used as explants, callus induction was noticed in 91% of cultures which showed shoot regeneration on MS medium supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 KN. These shoots were transferred to fresh medium containing various concentrations and combinations of 6-benzyladenine (BA) and N6-(2-isopentenyl)adenosine (2-iP). Maximum shoot multiplication was observed after 60 d of the second subculture on MS medium containing 2 mg l−1 (8.9 μM) BA. These shoots were rooted best (87%) on MS medium containing 2 mg l−1 (9.9 μM) indole-3-butyric acid (IBA). The plantlets were transferred to the field after acclimatization and showed 60% survival.
Totipotent callus of Cypripedium formosanum, an endangered slipper orchid species, was induced from seed-derived protocorm segments on a quarter-strength Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid and 4.54 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (thidiazuron). This callus proliferated well and was maintained by subculturing on the same medium. On average, 13 protocorm-like bodies could be obtained from a piece of 4 mm callus after being transferred to the medium with 4.44 μM N6-benzyladenine after 8 wk of culture. The regenerated protocorm-like bodies formed shoots and roots on medium containing 1 g l−1 activated charcoal and 20 g l−1 potato homogenate. After 24 wk of culture on this medium, well-developed plantlets ready for potting were established.
M. A R. I A D. E. L S. OCORRO. SANTOS-DÍAZ, R. I C. A R. D. O. MÉNDEZ-ONTIVEROS, A. L B. E R. T. O. ARREDONDO-GÓMEZ, M. A R. I A D. E L. O. URDES. SANTOS-DÍAZ
In vitro propagation of Pelecyphora aselliformis, a Mexican cactus which is considered rare and is highly valued in the commercial market, was initiated using seeds as explants. The longitudinal explants from seedlings germinated in vitro were cultivated on Murashige and Skoog medium containing 8.8 μM benzyladenine (BA) or 4.6 μM kinetin at pH 7.0. After 120 d, each explant gave rise to five shoots and this number of shoots increased 20–25% after subculture. The hyperhydricity was similar in both media, but callus formation was lower on the medium with BA. The shoot development, in terms of epicotyl length, and fresh and dry weight after 6 wk, was also recorded. The epicotyl length was similar on shoot-forming media but the quality of shoots was better on media containing BA. In about 1 yr, 500-600 well-defined shoots were obtained. The rooting of shoots was very slow and a vigorous radical system was observed after 1 yr of culture.
Somatic embryos could be induced from embryogenic callus originating from mesocotyl as well as leaf-base segments of Paspalum scrobiculatum on Murashige and Skoog (MS) or Chu et al. (N6) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9.0, 18.0, and 22.5 μM). N6 medium was better than MS, for both explants, for high-frequency somatic embryogenesis. Also, mesocotyl tissues were relatively more totipotent than leaf-base segments. The somatic embryos ‘germinated’ and formed plantlets on transfer of embryogenic calluses to hormone-free MS or N6 regeneration medium. Embryogenic cultures could be maintained on low hormone medium which readily regenerated to form plantlets on hormone-free medium. A higher frequency of plantlet formation occurred on MS than on N6 medium. In vitro-formed plantlets were gradually acclimatized in the culture room and on transfer to soil flowered and set seed. Somatic embryogenesis and plantlet regeneration from mesocotyl and leaf-base segments are potentially simpler systems than regeneration from ‘embryonic’ explants such as immature embryos and unemerged inflorescences.
An improved protocol for shoot regeneration from hypocotyl segments of seedlings from open-pollinated seeds of lingonberry (Vaccinium vitis-idaea L.) cultivars, ‘Ida’, ‘Splendor’, and ‘Erntesegen’, and a native clone from Newfoundland was developed. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, central, and basal segments of the hypocotyl was tested. Highly regenerative callus was obtained from hypocotyl segments on modified Murashige and Skoog (MMS) medium containing 5–10 μM TDZ. A maximum of 10 buds and 12 shoots per apical segment for seedlings of cultivar ‘Ida’ regenerated on MMS containing 10 μM TDZ. Callus and bud regeneration frequency, callus growth, and number of buds and shoots per regenerating explant depended not only on the specific segment of the hypocotyl, but also on parental genotype. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to a shoot proliferation medium containing 1–2 μM zeatin. The optimal concentration of sucrose for shoot elongation was 20 g l−1. Shoots were rooted ex vitro on a 2 peat : 1 perlite (v/v) medium after dipping in 0.8% indole-3-butyric acid, and rooted plants acclimatized readily under greenhouse conditions.
The species, Kniphofia leucocephala is extant at only one location, Langepan, KwaZulu-Natal in South Africa, where the population is threatened by afforestation and possibly grazing. Consequently, a continuous culture system was established as part of a program for the propagation and re-introduction of plants into the wild. The efficiency of the system in terms of shoot multiplication and, particularly, the frequency and rate of root initiation was strongly influenced by the concentration of benzyladenine in the shoot multiplication medium. The optimum shoot multiplication medium for subsequent root initiation contained 2 mg l−1 (8.9 μM) benzyladenine alone. The shoots were successfully rooted and acclimatized. Approximately 200 shoots can be produced from one shoot after five 4-wk cycles. Thus, large numbers of plantlets can be propagated in this continuous culture system, serving conservation interests.
Direct plant regeneration from flowering plant-derived lamina explants of Anthurium andraeanum Hort. cultivars Tinora Red and Senator was established on modified Murashige and Skoog (MS) medium. Cultivar difference, stage of source lamina and the position of explant in lamina, medium pH, and type of growth regulators significantly influenced direct plant regeneration. Explants from young brown lamina were superior to young green lamina. The half-strength MS medium containing 1.11 μM N6-benzyladenine (BA), 1.14 μM indole-3-acetic acid, and 0.46 μM kinetin at pH 5.5 was most effective for induction of shoot formation. Explants from the proximal end of the source lamina gave rise to a higher number of shoots compared to the mid and distal regions. Cultivar Tinora Red was more regenerative than Senator in terms of number of shoots per explant. The use of a lower BA concentration (0.44 μM) was essential for callus-free shoot multiplication during subculture. Regenerated shoots could be induced to form roots on half-strength MS medium supplemented with 0.54 μM α-naphthaleneacetic acid and 0.93 μM kinetin. More than 300 plantlets of each cultivar were harvested from a single source lamina within 200 d of culture. Most plantlets (95%) survived after acclimation in soil.
This is the first communication of direct shoot regeneration from fully developed leaves of potted mature Echinacea purpurea plants. Shoot buds were induced directly on the adaxial surface of mature leaf tissues of E. purpurea 30 d after culture initiation on Woody Plant Medium (WPM) supplemented with various levels of 6-benzyladenine (BA). Maximum shoot organogenesis, with 12–20 shoots per leaf segment, was obtained with 5% coconut milk and 2.5 mg l−1 (6 μM) BA in 30 d. Callus was induced using 0.5 mg l−1 (1 μM) α-naphthaleneacetic acid and 2.5 mg l−1 (6 μM) BA. The regenerated shoots were rooted on WPM supplemented with 1.5 mg l−1 (3 μM) of indole-3-butyric acid, 3% sucrose, and 0.85% agarose. Rooted plants were successfully transferred to soil in pots and appeared morphologically normal and flowered in a growth chamber.
Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52 μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.
Cotyledons excised from seedlings of Cajanus cajan (pigeonpea) were grown on media containing cytokinins (6-benzyladenine, zeatin, and zeatin riboside) and an allied compound, thidiazuron. With the exception of zeatin riboside, initial response in terms of induction of organized structures was very high. However, subsequent regeneration of shoots from cotyledon explants was very poor. Anatomical studies on the regenerating explants were undertaken to study the pattern of morphogenesis. Cytokinins and thidiazuron induced divisions in the epidermal and sub-epidermal cell layers leading to the formation of primary protrusions on the surface. This was followed by the development of foci of high meristematic activity either on the surface or within the primary protrusions. These foci differentiated into embryo-like structures or shoot meristem-like structures. Mostly aberrant shoots, with poorly developed apical meristems, regenerated from these structures.
Shoot apex, nodal, and leaf explants of Stevia rebaudiana Bertoni can regenerate shoots when cultured on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine (BA; 8.87 μM) and indole-3-acetic acid (5.71 μM). Rooting of the in vitro-derived shoots could be achieved following subculture onto auxin-containing medium. A survival rate of 70% was recorded at the hardening phase on the substrate cocopeat. The presence of the sweet diterpene glycosides, viz. stevioside and rebaudioside, was confirmed in the in vitro-derived tissues of Stevia using HPTLC techniques. Callus cultured on agar-solidified MS medium supplemented with BA (8.87 μM) and indole-3-butyric acid (9.80 μM) showed the highest sweetener content.
A regeneration system was developed for elite Egyptian maize inbred lines using immature embryos as explants. This system proved to be highly genotype-dependent. Line Gz 643 was identified as the best line, revealing the highest regeneration frequency (42.2%). Addition of l-proline and silver nitrate to culture media greatly enhanced the formation of embryogenic type II callus and the regenerability of some of the tested lines. Transformation of the scutellar tissue of immature embryos from inbred line Gz 643 was performed with the particle delivery system using a single plasmid carrying both the GUS and Bar genes (pAB-6) or by co-transformation with two plasmids, pAct1-F (GUS) and pTW-a (Bar). Different transformation parameters were evaluated, i.e. osmotic treatment, acceleration pressure, and number of shots. Osmotic treatment (0.25 M sorbitol 0.25 M mannitol) along with the use of either acceleration pressure 1300 psi and one shot per plate (for co-transformation with pAB-6) or 1100 psi and two shots per plate (for transformation with pAct1-F and pTW-a) gave the best results, as expressed by the number of blue spots in the β-glucuronidase (GUS) assay. Stable transformation was confirmed in Ro transformed plants by means of histochemical GUS assay and herbicide application. PCR and Southern blot analysis proved the integration of the full-length genes in some of the transgenics.
Lilium Asiatic hybrid ‘Mona’ bulblets were cultured in vitro for 100 d under photoautotrophic (CO2-enriched conditions and without sucrose in the medium) and heterotrophic (non-enriched CO2 conditions and sucrose-supplemented medium) methods and under various levels of photosynthetic photon flux (PPF). Bulblet growth and net photosynthetic rate (NPR) were analyzed. CO2- and PPF-enriched conditions enhanced the overall growth of bulblets, scale leaves, and roots. Heterotrophic conditions enhanced bulblet growth but higher PPF levels were inhibitory to the development of scale leaves. These results indicate the CO2- and PPF-enriched conditions (photoautotrophic conditions) are beneficial for the production of high-quality bulblets of Asiatic hybrid lilies in vitro.
Plantlets of Capsicum annuum L. cv. Sweet Banana regenerated via somatic embryogenesis from immature zygotic embryos were capable of producing flower, fruit, and seed when cultured in small tissue culture containers. In vitro floral buds were first formed on plantlets that grew on plantlet development medium [agar-gelled Murashige and Skoog (MS) basal medium containing 1 mg l−1 (5.3 μM) α-naphthaleneacetic acid (NAA)] in a growth room at 22°C and continuous illumination. However, floral buds rarely developed further into mature flowers. This problem was overcome using the vented autoclavable plant tissue culture containers. In vitro fruit formation and ripening was observed when liquid half-strength MS basal medium supplemented with 5 μg ml−1 silver thiosulfate, 1 mg l−1 (5.3 μM) NAA, and 3% sucrose was added to the surface of the plantlet development medium. Hand-pollination improved fruit set. Further research is needed to determine why the pepper seeds formed in vitro failed to germinate.
Shoot tips, of four potato cultivars (Désirée, Genet, Tigoni, and Tomensa), 3–4 mm in size, were precultured for 2 d on Murashige and Skoog (MS) solid medium, then encapsulated in calcium alginate to produce hollow bead synthetic seed capsules averaging 0.78 cm in diameter. Regeneration and ‘regrowth’ were tested on MS solid medium and on soil in the greenhouse, respectively. The encapsulated shoot tips were stored at 4 and 10°C for up to 390 d. For all cultivars, the encapsulated shoot tips stored at both temperatures for 180 d and at 4°C for 270 d, 100% regeneration on MS solid medium was recorded. After 360 d in storage at 4°C, 70.8% (Tigoni), 66.7% (Genet), 58.3% (Désirée), and 51.5% (Tomensa) regeneration was recorded on MS medium, reducing to 15% (Tigoni), 25% (Genet), 10% (Désirée), and 0% (Tomensa) regeneration after 390 d in storage. ‘Regrowth’ of 93–100% was recorded for non-stored encapsulated shoot tips, directly transferred on soil in the greenhouse after a 2 wk preculture on MS solid medium with an added fungicide (carbendazim) in the encapsulating gel. The ‘regrown’ shoot tips produced plants showing normal development. The results presented here demonstrate that hollow bead synthetic seed capsules are an alternative propagating method for potato seed production.
The purpose of this study was to establish an efficient in vitro nodulation device for producing actinorhizal root nodules on Allocasuarina verticillata and Casuarina glauca. Seeds from the two species were germinated aseptically and seedlings with at least two photosynthetic branchlets and a 3–5 cm long root system were transferred into Petri dishes containing a biphasic (solid/liquid) medium. To assess the nodulation capacity, four different culture media were tested. As soon as the root system developed and spread adequately on the surface of the medium, plants were deprived of nitrogen for at least 1 wk and inoculated with the Frankia strain. The time course nodulation for A. verticillata showed that the basal Hoagland medium supplemented with CaCO3 and KNO3 was most efficient, with 83% of plantlets forming nodules, while the medium supplemented with CaCO3 reached 100% nodulation for C. glauca. This procedure can provide a valuable tool for the study of early events of actinorhizal nodulation and spatio-temporal expression of symbiotic genes in transgenic Casuarinaceae.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere