Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
While much has been learned regarding the phylogeny and evolution of cynipoid wasps, clearly illustrated diagnostic tools and identification keys have remained stagnant. So too, where keys do exist, they are often to genus or species, and there are no user-friendly keys to groups such as tribes, subfamilies, or families.This state of affairs leaves a knowledge gap for non-specialists and slows future research on the group.To address this, we provide a fully illustrated key to the higher-level groups of world Cynipoidea. We also provide summaries of all higher-level taxa with updated generic lists, biological data, distribution, and literature resources. The dichotomous key presented here is complimented with a multi-entry matrix-based key, created in Lucid, and served on www.waspweb.org with online versions of the dichotomous keys also available.
MOLECULAR PHYLOGENETICS, PHYLOGENOMICS, AND PHYLOGEOGRAPHY
Baits targeting invertebrate ultraconserved elements (UCEs) are becoming more common for phylogenetic studies. Recent studies have shown that invertebrate UCEs typically encode proteins—and thus, are functionally different from more conserved vertebrate UCEs—and can resolve deep divergences (e.g., superorder to family ranks). However, whether invertebrate UCE baits have the power to robustly resolve relationships at shallower phylogenetic scales has been generally limited to investigations within the Coleoptera and Hymenoptera; thus, there are many invertebrate UCE baits that remain to be tested at shallower levels (i.e., tribes and congeners). Here, we assessed the ability of a recently designed Hemiptera UCE bait set to reconstruct more recent phylogenetic relationships in the largest leaf-footed bug subfamily, the Coreinae (Hemiptera: Coreidae), using a taxon-rich sample representing 21 of the 32 coreine tribes. Many well-supported, novel relationships were congruent in maximum likelihood and summary coalescent analyses. We also found evidence for the para- and polyphyly of several tribes and genera of Coreinae, as well as the subfamilies Coreinae and Meropachyinae. Our study, along with other recent UCE studies, provides evidence that UCEs can produce robust and novel phylogenetic hypotheses at various scales in invertebrates.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere