BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Bruno P. Le Ru, Claire Capdevielle-Dulac, Emmanuel F. A. Toussaint, Desmond Conlong, Johnnie Van den Berg, Beatrice Pallangyo, George Ong’amo, Gilson Chipabika, Richard Molo, William A. Overholt, James P. Cuda, Gael J. Kergoat
Ten morphologically similar species of Acrapex from eastern and south-eastern Africa belonging to the A. stygiata and A. albivena groups are reviewed. Six species are described as new: A. brunneella, A. mitiwa, A. mpika, A. salmona, A. sporobola and A. yakoba. The Poaceae host plants of eight species are recorded; four species, A. mitiwa. A. subalbissima, A. syscia and A. yakoba, were found developing exclusively on Imperata cylindrica (L.) Beauv., (Andropogoneae); two species, A. sporobola and A. salmona, on I. cylindrica and Sporobolus macranthelus Chiov. (Zoysieae); and A. albivena on I. cylindrica, Miscanthus capensis (Nees) Andersson (Andropogoneae) and Cymbopogon sp. (Andropogoneae). Acrapex stygiata larvae developed on M. capensis and Cymbopogon sp. The host plants of A. brunneella and A. mpika remain unknown. We also conducted molecular phylogenetics and molecular species delimitation analyses on a comprehensive sample of 49 specimens belonging to nine of the studied species. Molecular phylogenetics and molecular species delimitation analyses provided additional evidence of the validity of the six newly described species but also suggested a level of hidden biodiversity for one of them.
The kuruma shrimp Penaeus japonicus Bate, 1888 (Decapoda : Penaeidae) is economically important in the global shrimp market. It was regarded as the only species in the subgenus Marsupenaeus. However, our previous molecular analyses revealed two cryptic species (Forms I and II) in this species complex. In this study, we confirm the phylogenetic relatedness between the two cryptic species; revise their taxonomic status; and review their range distribution. The name Penaeus pulchricaudatus Stebbing, 1914 (with type-locality off the eastern coast of South Africa), previously considered as a junior synonym of P. japonicus, is fixed for Form II through a neotype selection. P. japonicus (Form I) is only confined to the East China Sea (including Japan, its type-locality) and the northern South China Sea. P. pulchricaudatus is widely distributed in the South China Sea, Australia, the Red Sea, the Mediterranean, and the western Indian Ocean. Phylogenetic analysis shows that P. japonicus is genetically homogeneous yet P. pulchricaudatus exhibits a strong phylogeographical structure. The Mediterranean stock of P. pulchricaudatus originated from the Red Sea population, supporting the Lessepsian migration hypothesis. The presence of two closely related cryptic species in the P. japonicus species complex provides important insights into fishery management and aquaculture development.
The enigmatic gall crab family Cryptochiridae has been proposed to be phylogenetically derived from within the Grapsidae (subsection Thoracotremata), based on the analysis of 16S mtDNA of one cryptochirid, Hapalocarcinus marsupialis, among a wide array of thoracotremes, including 12 species of the family Grapsidae. Here, we test the monophyly and phylogenetic position of Cryptochiridae using the same gene, but with an extended representation of cryptochirids spanning nine species in eight of 21 genera, in addition to further thoracotreme representatives. The results show that gall crabs form a highly supported monophyletic clade within the Thoracotremata, which evolved independently of grapsid crabs. Therefore, the Cryptochiridae should not be considered as highly modified Grapsidae, but as an independent lineage of Thoracotremata, deserving its current family rank. Further molecular and morphological studies are needed to elucidate the precise placement of the cryptochirids within the Eubrachyura.
The present study focusses on comparatively assessing the efficacy for DNA barcoding of the two most commonly used mitochondrial markers (cox1 and 16S) in a genus of erigonine spiders. In total, 53 specimens representing five species, including four multi-sampled species, were sampled from several European localities. Initial evaluation of species monophyly was performed through parsimony and Bayesian phylogenetic analyses. Efficacy of mitochondrial markers was tested using operational (including distance-, tree-based measures and Barcode Gap) and evolutionary criteria (using the General Mixed Yule-coalescent Model) for species delimitation. We propose that the cox1 marker can potentially overestimate analyses of biodiversity and thus might not be the preferred marker for DNA species identification and delimitation methods in Oedothorax. Instead, our results suggest that the 16S marker appears to be a promising candidate for such endeavour. Evaluating the contribution and suitability of markers to the re-identification of species, measured by their recovery of well established morphological species, is critical for future studies and for reliable results in species identification in spiders.
Acaciacapsus, gen. nov. is described as a new plant bug genus, with eight new included species: A. amadeus, sp. nov.; A. appha, sp. nov.; A. aureolus, sp. nov.; A. bournda, sp. nov.; A. emeraldensis, sp. nov.; A. lolworthensis, sp. nov.; A. millstreamensis, sp. nov.; and A. woodwardi, sp. nov. Differential diagnoses and descriptions are given for all species, including salient characters, and the male and female genitalia. An identification key is provided to species. Male genitalia are illustrated, and a habitus photograph is provided for each species. Female genitalia are illustrated for two species. The genus is putatively an Acacia specialist, and has cryptozoic yellowish colouration. The species are primarily found in arid and semi-arid regions of non-monsoonal regions of Australia. The collection events are digitised and their distributions mapped. A phylogeny of species is given. Modifications are given to male genitalic homologies and are discussed in reference to other Australian orthotylines.
Due to their interesting biology, conspicuous sexual dimorphism and the ability to conduct experiments on species that breed under laboratory condition, sepsid flies (Diptera : Sepsidae) are becoming increasingly important model organisms in evolutionary biology. Accurate species boundaries and well supported phylogenetic hypotheses are thus of interest to many biologists. Here we resolve the conflict surrounding the taxonomic status of the European Sepsis nigripes Meigen, 1826, which is shown to be a valid species using morphological and molecular data applied to multiple species concepts. The species is also placed onto a phylogenetic tree for the genus Sepsis that includes most European and North American species. In addition, we assess the genetic variability between two populations of the Holarctic Sepsis luteipes Melander & Spuler, 1917 from Europe and North America and find conflicting evidence between morphology and DNA sequences. Different species concepts here yield different inferences, and if two species were to be accepted based on molecular data, Sepsis helvetica Munari, 1985 from Europe would have to be resurrected from synonymy. We provide high-resolution images for all species in order to aid in accurate identification. Both species are also added to Sepsidnet, the digital reference collection for Sepsidae ( http://sepsidnet-rmbr.nus.edu.sg). Lastly, we discuss a field site in the Swiss Alps where 12 species of Sepsis occur sympatrically on the same pasture.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere