Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The epidemiology of Pierce’s disease of grape (Vitis spp.) in California has changed over the past 10 yr due to the introduction of an exotic vector, Homalodisca vitripennis (Germar), the glassy-winged sharpshooter. Although this insect is highly polyphagous, citrus (Citrus spp.) is considered a preferred host and proximity to citrus has been implicated as a significant risk factor in recent epidemics of Pierce’s disease in southern California. Consequently, a detailed knowledge of the distribution and management of citrus in relation to grape is needed to improve insect and disease management. Analysis of data on the area planted to these two commodities indicates that only five counties in California concomitantly grow >1,000 ha of grape and >1,000 ha of citrus: Riverside, Kern, Tulare, Fresno, and Madera counties. Comparison of the distribution of grape and citrus within each of these counties indicates that the percentage of grape that is in proximity to citrus is greatest for Riverside County, but the total area of grape that is in proximity to citrus is greater for Fresno, Kern, and Tulare counties. The use of carbamates, neonicotinoids, organophosphates, and pyrethroids as part of the citrus pest management program for control of key insect pests was compared among the same five counties plus Ventura County from 1995 to 2006. Ventura County was included in this analysis as this county grows >10,000 ha of citrus and has established glassy-winged sharpshooter populations. The use of these broad-spectrum insecticides was lowest in Riverside and Ventura counties compared with the other four counties. Analysis of historical trapping data at the county scale indicates a negative association of broad-spectrum insecticide use with glassy-winged sharpshooter abundance. These results are used to retrospectively analyze the Pierce’s disease outbreaks in Kern and Riverside counties.
Ionizing irradiation is used as a phytosanitary treatment against quarantine pests. A generic treatment of 400 Gy has been approved for commodities entering the United States against all insects except pupae and adults of Lepidoptera because some literature citations indicate that a few insects, namely, the Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae), and the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), are not completely controlled at that dose. Radiotolerance in insects increases as the insects develop, so the minimum absorbed dose to prevent F1 egg hatch for these two species when irradiated as adults was examined. Also, because hypoxia is known to increase radiotolerance in insects, Angoumois grain moth radiotolerance was tested in a hypoxic atmosphere. A dose range of 336–388 Gy prevented F1 egg hatch from a total of 22,083 adult Indianmeal moths. Dose ranges of 443–505 and 590–674 Gy, respectively, prevented F1 egg hatch from a total of 15,264 and 13,677 adult Angoumois grain moths irradiated in ambient and hypoxic atmospheres. A generic dose of 600 Gy for all insects in ambient atmospheres might be efficacious, although many fresh commodities may not tolerate it when applied on a commercial scale.
The effectiveness of oxalic acid (OA) and Sucrocide (S) (AVA Chemical Ventures, L.L.C., Portsmouth, NH) in reducing populations of the varroa mite Varroa destructor Anderson & Trueman (Acari: Varroidae) in honey bee, Apis mellifera L. (Hymenoptera: Apidae) colonies was measured under the desert conditions of Arizona, USA. OA and S were applied three times 7 d apart. A 3.2% solution of OA was applied in sugar syrup via a large volume syringe, trickling 5 ml per space between frames in the colony. S was applied at a concentration of 0.625% (mixed with water), according to the label directions, using a compressed air Chapin sprayer at 20 psi to apply 59 ml per frame space. Varroa mites, collected on a sticky board before, during, and after the treatments, were counted to assess the effectiveness of the treatments. This study showed that a desert climate zone did not confer any positive or negative results on the acaricidal properties of OA. Even with brood present in colonies, significant varroa mite mortality occurred in the OA colonies. In contrast, we found that Sucrocide was not effective as a mite control technique. Despite its ability to increase mite mortality in the short-term, varroa mite populations measured posttreatment were not affected any more by Sucrocide than by no treatment at all.
Our study focused on colony dynamics of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in relation to the standard practice of planting rye grass (i.e., plowing) in the fall in Louisiana. Microsatellite molecular markers were used to determine genotypes of individuals from red imported fire ant colonies. These markers allowed us to monitor treatment effect by detecting changes in number and location of colonies in response to disking of pasture plots. Previous research on mound disturbance as a form of cultural control in pastures has produced mixed results. We found that the majority of colonies persisted on plots after plowing. Mound density and mound area, 5 mo after plowing, were not significantly different among treatments. In contrast, April measurements of mound volume were significantly smaller on plowed plots compared with control plots. A closer look at the rebuilding of mounds on plowed plots, during the 5 mo, showed that mound heights stayed below pretreatment measurements and they were significantly smaller than those of undisturbed mounds. Whether plowing has potential for use as a cultural control technique in reducing the impact of red imported fire ant mounds on agricultural practices in pastures remains to be seen. Conceivably, the best application of this technique will be in combination with other control measures in an integrated pest management approach to control red imported fire ants in pastures.
The little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae), is an invasive ant that forms supercolonies when it successfully invades new areas. W. auropunctata was first reported in Hawaii in 1999, and it has since invaded a variety of agricultural sites, including nurseries, orchards, and pastures. Amdro (hydramethylnon; in bait stations), Esteem (pyriproxyfen; broadcast bait), and Conserve (spinosad; ground spray) were tested for their efficacy against W. auropunctata in a rambutan, Nephelium lappaceum L. and mangosteen, Garcinia mangostana L., orchard by making treatments every 2 wk for 16 wk. Relative estimates of ant numbers in plots was determined by transect sampling using peanut butter-baited sticks. Significant treatment effects were observed on weeks 13–17, with reductions in ant counts occurring in the Amdro and Esteem treatments. During this period, the reduction in ant numbers from pretreatment counts averaged 47.1 and 92.5% in the Amdro and Esteem plots, respectively, whereas ant numbers in the untreated control plots increased by 185.9% compared with pretreatment counts. Conserve did not cause a reduction in ant counts as applied in our experiment. No plots for any of the treatments achieved 100% reduction. Pseudococcidae were counted on branch terminals at 4-wk intervals. The two predominant species, Nipaecoccus nipae (Maskell) and Nipaecoccus viridis (Newstead) were significantly lower in the Amdro and Esteem treatments on week 16 compared with controls. Many W. auropunctata were found nesting in protected sites in the orchard trees, which may have compromised the ground-based control methods. Absolute density estimates from shallow core samples taken from the orchard floor indicated the W. auropunctata supercolony exceeded 244 million ants and 22.7 kg wet weight per ha.
Three slow release experimental rotenone formulations were tested to evaluate their effectiveness against Varroa destructor Anderson & Trueman in colonies with sealed brood and to determine whether they left residues in honey and bees wax: we evaluated cardboard strip containing 1 g rotenone and two types of polyvinyl chloride (PVC) strips containing 1 (high-dose) and 0.5 (low-dose) g of rotenone, respectively. In general, the efficacy of the treatments, expressed as percentage of mite mortality, was highly variable in all treatment groups (range, 0–96.8%). The highest effectiveness was obtained with the high-dose-PVC strips, which caused an average percentage of mortality ranging between 47 and 69% in the adult bees and sealed brood, respectively. At the end of the treatment, rotenone residues ranged between 0.03 and 0.06 and 1.5–144.0 mg/kg in honey and wax, respectively. Rotenone residues in wax were still detectable 4 mo after the treatment period, whereas no residues were found in honey. The higher residues content and persistence recorded in wax samples, was probably due to the lipophilic nature of rotenone. A reduction in the amount of adults was recorded for the group treated with high-dose-PVC strips compared with the untreated colonies. Toxicological risks connected with the use of rotenone and the low maximum level recently fixed by European legislation (0.01 mg/kg) suggest that rotenone is not a good candidate for reducing varroa populations in honey bee colonies.
We conducted research to examine the potential impacts of coumaphos, fluvalinate, and Apilife VAR (Thymol) on drone honey bee, Apis mellifera L. (Hymenoptera: Apidae), sperm viability over time. Drones were reared in colonies that had been treated with each miticide by using the dose recommended on the label. Drones from each miticide treatment were collected, and semen samples were pooled. The pooled samples from each treatment were subdivided and analyzed for periods of up to 6 wk. Random samples were taken from each treatment (n = 6 pools) over the 6-wk period. Sperm viability was measured using dual-fluorescent staining techniques. The exposure of drones to coumaphos during development and sexual maturation significantly reduced sperm viability for all 6 wk. Sperm viability significantly decreased from the initial sample to week 1 in control colonies, and a significant decrease in sperm viability was observed from week 5 to week 6 in all treatments and control. The potential impacts of these results on queen performance and failure are discussed.
Chalkbrood is a serious disease of alfalfa leafcutting bee Megachile rotundata (F.) (Hymenoptera: Megachilidae) larvae, causing upward of 20% infection in the field. The causative agent is the fungus Ascosphaera aggregata. This bee is used extensively for alfalfa seed pollination in the United States. Using laboratory bioassays, we previously demonstrated that fungicides can reduce chalkbrood levels in the larvae. Here, we evaluate the toxicity of four fungicides, Benlate, Captan, Orbit, and Rovral, to adult bees by using three different bioassays. In the first test, fungicides were applied to bees’ thoraces. In the second test, mimicking foliage residue, a piece of filter paper soaked in fungicide was placed on the bottom of a container of bees. The third test evaluated oral toxicity by incorporating fungicides into a sugar-water solution that was fed to the bees. The filter paper test did not discriminate among the fungicides well, and the oral test resulted in the greatest mortality. Toxicity to males was greater than to females. The use of fungicides for chalkbrood control is a logical choice, but caution should be used in how they are applied in the presence of bees.
Shaking is a nonantibiotic management technique for the bacterial disease American foulbrood (AFB) (Paenibacillus larvae sensu Genersch et al.), in which infected nesting comb is destroyed and the adult honey bees, Apis mellifera L. (Hymenoptera: Apidae), are transferred onto uncontaminated nesting material. We hypothesized that colonies shaken onto frames of uninfected drawn comb would have similar reductions in AFB symptoms and bacterial spore loads than those shaken onto frames of foundation, but they would attain higher levels of production. We observed that colonies shaken onto drawn comb, or a combination of foundation and drawn comb, exhibited light transitory AFB infections, whereas colonies shaken onto frames containing only foundation failed to exhibit clinical symptoms. Furthermore, concentrations of P. larvae spores in honey and adult worker bees sampled from colonies shaken onto all comb and foundation treatments declined over time and were undetectable in adult bee samples 3 mo after shaking. In contrast, colonies that were reestablished on the original infected comb remained heavily infected resulting in consistently high levels of spores, and eventually, their death. In a subsequent experiment, production of colonies shaken onto foundation was compared with that of colonies established from package (bulk) bees or that of overwintered colonies. Economic analysis proved shaking to be 24% more profitable than using package bees. These results suggest that shaking bees onto frames of foundation in the spring is a feasible option for managing AFB in commercial beekeeping operations where antibiotic use is undesirable or prohibited.
The grass sharpshooter, Draeculacephala minerva Ball (Hemiptera: Cicadellidae), is a very common and often abundant grass-feeding leafhopper in California. Its population dynamics and ability to transmit Xylella fastidiosa were monitored over a 2-yr period in California’s San Joaquin Valley. Collections of individuals from natural populations in irrigated pastures and alfalfa, Medicago savita L. fields adjacent to X. fastidiosa-infected almond (Prunus spp.) orchards indicated the occurrence of three discrete generations per year that peaked during the summer. Population densities varied significantly among experimental field survey sites. Insects captured on intercepting mesh traps, yellow sticky cards, and UV-light traps indicated local movement of these insects into and surrounding X. fastidiosa-infected, almond orchards. Local movement and seasonal transmission of X. fastidiosa from infected almonds to Catharanthus roseus (L.) G. Don indicated that this insect may be partly responsible for the slow spread of almond leaf scorch now recently observed in California’s San Joaquin Valley.
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacterial pathogen transmitted by several sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L.) and citrus [Citrus sinensis (L.) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret)] sharpshooters that occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%), but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations, vector efficiency in coffee and citrus is lower than that reported in other hosts.
Successful infection of the plant pathogenic bacterium Xylella fastidiosa (Wells) from an infected plant to a new host involves three main steps: 1) acquisition of the bacterium by a vector; 2) inoculation of a noninfected host plant by the vector; and 3) establishment of sufficient titers of X. fastidiosa in the host plant to sustain a chronic infection. Understanding the basic biology of the transmission process is a key to limiting the spread of plant diseases induced by X. fasdidiosa and reducing agricultural losses, especially those experienced in California since the introduction of a new vector, Homalodisca vitripennis (Germar) (Hemiptera, Cicadellidae) (formerly H. coagulata Say), the glassy-winged sharpshooter. In this study, H. vitripennis adults that acquired X. fastidiosa were allowed access to chrysanthemum plant cuttings for 30, 60, 90, or 120 min. The numbers of X. fastidiosa acquired (i.e., cells present in the insect foregut) and the number inoculated to the plant cuttings were separately determined using quantitative real-time polymerase chain reaction (PCR). In addition, the number of times glassy-winged sharpshooter stylets probed plant cuttings and the amount of time glassy-winged sharpshooter spent actively ingesting were monitored using video surveillance. Linear regression did not indicate a relationship between the number of X. fastidiosa cells inoculated into the plant cutting and either the titer of pathogen present in the insect or amount of time spent ingesting per probe. However, the number of probes significantly influenced the number of X. fastidiosa cells inoculated. Due to the highly variable nature of transmission, our model could not account for all observed variation as indicated by low R2 values. However, our results suggest that the mechanism of transmission is dependent on probing behaviors more than ingestion duration.
The developmental and reproductive fitness of the polyphagous predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) was compared on two factitious foods and four artificial diets. Adults fed factitious foods (Ephestia kuehniella Zeller eggs and Artemia franciscana Kellogg cysts) performed better than those fed artificial diets. Among the artificial diets, a diet composed of liver and ground beef scored better than meridic diets based on egg yolk. Within the egg yolk-based artificial diets, the developmental fitness varied proportionally with the amount of egg yolk present in the diet. A food switching experiment, in which nymphs and adults of the predator were fed either E. kuehniella eggs or an egg yolk-based artificial diet, showed that the impact of adult food on reproductive capacity was greater than that of nymphal food. An optimal adult food was able to wholly compensate for deficiencies incurred by an inferior artificial diet in the nymphal stage. A strong correlation was found between oocyte counts, lifetime oviposition, and the number of eggs laid after 8 d. A rapid dissection assay may thus be effective to reliably and economically assess the fitness of O. laevigatus as a function of the diet. This method also may prove useful as part of quality assurance procedure for commercially produced predators.
We investigated the effects of a diamondback moth-resistant Chinese cabbage (Brassica campestris subsp. napus variety pekinensis Makino), expressing the insecticidal protein Cry1A(c) toxin derived from Bacillus thuringiensis, on the nontarget herbivore Mamestra brassicae (L.)(Lepidoptera: Noctuidae) and its parasitoid wasp Microplitis mediator (Haliday) (Hymenoptera: Braconidae). A decreased survival rate at neonate stage was observed in M. brassicae when reared on Bt cabbage, although overall development was not significantly affected. According to enzyme-linked immunosorbent assay test using Cry1A(c) antibody, the Cry toxin was only detected in the alimentary canal, not in the hemolymph or remaining body parts of M. brassicae, indicating that the ingested Cry toxin is neither distributed inside the body nor transferred through the trophic level. As expected, no Cry toxin was found in the larvae and cocoons of M. mediator. In addition, no significant changes were observed in the parasitization rate, larval period, pupal period, cocoon weight, or adult emergence rate when M. mediator wasps were reared on the M. brassicae larvae fed with transgenic Chinese cabbage. In summary, no direct or indirect adverse effects of transgenic Chinese cabbage on the two nontarget insect species were observed, suggestive of low risk in herbivore–parasitoid food chain.
Glyptapanteles flavicoxis (Marsh) (Hymenoptera: Braconidae) is a gregarious larval parasitoid of the Indian gypsy moth Lymantria obfuscata (Walker) (Lepidoptera: Lymantriidae), that is believed to have potential for inundative releases against gypsy moth populations, because it can be reared in large numbers with few hosts. Unfortunately, sex ratios in laboratory reared G. flavicoxis are usually male-biased, hindering efforts to mass release this species for biological control by making the production of females costly. Because parental age at time of mating is known to affect the sex ratio in some Braconidae, we crossed haploid males and virgin females at 0, 1, 4, 9, and 16 d old with at least 10 trials for each of the 25 combinations. Numbers and sex ratios of progeny produced by females each day were recorded. Both progeny and sex ratios (percentage of females) among progeny produced by ovipositing females of G. flavicoxis decreased markedly over time, so only the first days production need be used in mass rearing. The reduction in the proportion and numbers of females among progeny as females aged is consistent with sperm depletion. Approximately 30% of females in all age classes mated to newly emerged males (day 0) produced all male progeny, whereas only 10–15% of those mated to older males failed to produce any daughters. When crosses with only male progeny were excluded from the analysis, females mated to males 1 d old had higher sex ratios in progeny than those mated to males in other age classes. In addition, females mated the day that they emerged tended to have progeny with the highest sex ratios.
Chinese privet, Ligustrum sinense Lour., is a perennial semi-evergreen shrub that is a serious invasive weed in the United States. Classical biological control offers the best hope for controlling it in an economic, effective, and persistent way. Host specificity of one of the most promising biological control agents of Chinese privet, a flea beetle, Argopistes tsekooni Chen (Coleoptera: Chrysomelidae), was evaluated in China by using laboratory no-choice and choice tests on 13 species of Oleaceae and eight species in other families that have important economic value. In adult no-choice survival and oviposition tests, the flea beetle fed and survived for 30 d on Syringa oblata Lindl., Jasminum nudiflorum Lindl., and three species in the genus Ligustrum. Females also oviposited on these species, but only larvae from eggs laid on S. oblata and Ligustrum spp. developed successfully. In addition, the beetles did not feed or oviposit on the species of economic importance. In choice tests, adults preferred L. sinense for feeding and oviposition. These results show that A. tsekooni is relatively host specific and warrants further testing as a biocontrol agent of Chinese privet in the United States.
The occurrence of pear decline, a disease found in some pear (Pyrus spp.) orchards of Taiwan in recent years, is accompanied by an outbreak of Cacopsylla chinensis (Yang & Li). Two major morphological forms (summer and winter forms) with a variety of intermediate body color and two phylogenetic lineages of this psyllid have been described. The work herein used sequences of mitochondrial cytochrome oxidase I (COI) and 16S rDNA regions to delineate the genetic differentiation of this color-variable insect and to elucidate their relationship. Sequence divergence and phylogenetic analysis have shown that C. chinensis individuals could be divided into two lineages with 3.3 and 2.3% divergence of COI and 16S rDNA, respectively. All specimens from China were found to belong to lineage I. Restriction fragment length polymorphism analysis of COI with restriction enzymes AcuI, AseI, BccI, and FokI on 263 specimens of six populations from Taiwan produced two digestion patterns, which are in agreement with the two lineages described above. Both patterns could be found in each population, with most individuals belonging to lineage I and 5–21% of the individuals belonging to lineage II. Because these two lineages included summer as well as winter morphological forms, the lineage differentiation is apparently not related to morphological characters of this psyllid. Because the invasive records are not in favor of a sympatric differentiation, this psyllid is more likely introduced as different populations from countries in temperate regions.
Jason B. Oliver, Michael E. Reding, Sam O. Dennis, James J. Moyseenko, Nadeer N. Youssef, Michael G. Klein, Anne-marie A. Callcott, Shannon S. James, Lee R. McAnally, Bert L. Bishop
Insecticide drenches were applied to postharvest field-grown nursery plants harvested as 60-cm-diameter balled and burlapped (B&B) root balls for controlling third instars of Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae). Bifenthrin, chlorpyrifos, lambda-cyhalothrin, and thiamethoxam were drench-applied in fall and spring tests at volumes of runoff (1×; ≈2.57 liters per drench per root ball) or twice runoff (2×). Tests also examined consecutive drenches (two, four, or six) and B&B rotation between drenches. Fall-applied drenches did not meet the Domestic Japanese Beetle Harmonization Plan (DJHP) standards of ≤1 grub and ranged from 0 to 90% control. However, most fall-applied drenches significantly reduced grub numbers relative to the untreated root balls. Spring-applied drenches were more effective than fall drenches: chlorpyrifos treatments gave 94–100% control, whereas other spring-applied treatments were less consistent, including thiamethoxam (83–100% control) and bifenthrin (61–100% control). Lambda-cyhalothrin was not effective. A higher drench volume (2×) did not significantly improve treatment efficacy; however, grub numbers decreased as the number of drenches increased for fall-applied chlorpyrifos and thiamethoxam and spring-applied bifenthrin. Rotation of root balls significantly reduced grub numbers compared with nonrotated treatments for fall-applied chlorpyrifos (six drenches) and bifenthrin (two or six drenches), but these treatments did not meet DJHP standards. The study indicates chlorpyrifos, bifenthrin, and thiamethoxam drenches can control Japanese beetle in the spring and may provide a new postharvest option to certify B&B plants for Japanese beetle.
Species identification is a basic issue in biosecurity. Polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) is a useful molecular diagnostic tool for species identification. However, the lack of transferability of data has been a serious shortcoming of this method. A RFLP catalog, i.e., a graph of PCR-RFLP patterns expected from sequence data, was devised as a tool to facilitate PCR-RFLP data sharing among laboratories. Twelve species of Tetranychus spider mites have been recorded in Japan to date. In this study, we analyzed DNA sequences of the internal transcribed spacer (ITS) region in nuclear ribosomal DNA of 11 Tetranychus species. For the species identification using PCR-RFLP, we chose six candidates from 131 restriction endonucleases and developed an RFLP catalog of all known Japanese Tetranychus species except Tetranychus neocaledonicus André. The RFLP catalog revealed that most Tetranychus species had diagnostic restriction fragments. The RFLP catalog is transferable and simple molecular diagnostic tool, and it has the ability to add more species and newly found intraspecific variations. Therefore, we believe that the RFLP catalog will contribute to biosecurity as a practical diagnostic tool for species identification of spider mites.
Antheraea mylitta (Drury) is a tropical tasar-silk producing insect. Its populations occupying different ecological and geographical regions show a certain degree of phenotypic variability, for which they are known as “eco-races.” The eco-races are exploited for tasar silk production, and they are classified on the basis of their geographical distribution and morphology, which is often misleading when their systematic position is considered. To understand the genetic variability among the different eco-races, we used the random amplified polymorphic DNA (RAPD) method. Eighty random decamer primers were taken for RAPD amplifications. In total, 415 reproducible bands were used to generate a distance matrix, and for the subsequent clustering with unweighted pair-group method with arithmetic average. The number of polymorphic bands detected by each primer ranged from 5 to 24, with a mean value of 14.1 per primer. Percentage polymorphism was 81.9, and genetic distance values ranged from a minimum of 0.0108 between Modal and Nalia eco-races to a maximum of 0.0244 between Modal and Andhra local. The RAPD profiles obtained using A14, BC07, and C17 primers substantially differentiate all 10 commercially important eco-races, and the phylogenetic tree obtained from the data closely follows their geographical separations.
New Zealand is threatened by invasion of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), an important vector of Xylella fastidiosa, a gram-negative bacterium that causes Pierce’s disease in grape (Vitis spp.) and scorch diseases in many other horticultural crops. Therefore, an understanding of the host acceptability, feeding behavior, and potential vector efficiency of glassy-winged sharpshooter on New Zealand crops is important. We tested host plant acceptance and feeding behaviors of glassy-winged sharpshooter on three common horticultural crops grown in New Zealand (apple [Malus spp.], grape, and citrus [Citrus spp.]), and a native plant (Metrosideros excelsa [=tomentosa] Richard, pohutukawa), using the electrical penetration graph (EPG) technique. Probing (stylet penetration) behaviors varied among the host plants, primarily due to differences in waveform event durations. Apple and grape were the most accepted host plants, on which glassy-winged sharpshooter spent the majority of its time on the plant probing and readily located and accepted a xylem cell for ingestion. This resulted in long durations of sustained xylem fluid ingestion. In contrast, pohutukawa was the least accepted host. On this plant, glassy-winged sharpshooter spent less time probing and engaged in longer and more frequent testing/searching and xylem-testing activities, rejected xylem cells frequently, and spent less time with stylets resting, before accepting a xylem cell and ultimately performing the same amount of sustained ingestion. Citrus plants contaminated with sublethal insecticide residues were intermediate between these extremes, with some acceptance of xylem, but less ingestion, probably due to presumed partial paralysis of the cibarial muscles. Implications of the results in terms of host plant acceptance and the development of a stylet penetration index are discussed.
The sterile insect technique (SIT) is widely used for suppressing or eradicating target pest insect populations. The effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females. Irradiation is the effective manner to sterilize mass-reared insects. The negative impacts of this procedure are not limited to damage on reproductive cells. Gamma-radiation damages the epithelial tissue of midgut, which affects the alimentation in insects. Irradiated males alter their mating behavior over time because of the depression of metabolic activity by sterilization. In this study, we evaluated the male mating performance and sexually compatibility of irradiated male Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae) with a 200-Gy dose, as currently used in the SIT program in Okinawa Prefecture, throughout 16 d after irradiation in the laboratory. The mating ability of irradiated males did not differ from that of control males for about a week. However, the mating ability of irradiated male drastically decreased thereafter. We consider that irradiated male C. formicarius elegantulus with a 200-Gy dose had no major effect on male mating behavior approximately for a week after irradiation.
The sensitivity of the second, third (L3), and fourth (L4) instars of Culex pipiens L. and Ochlerotatus sticticus (Meigen) to two larvicides, temephos and Bacillus thuringiensis variety israelensis (Bti) was tested with and without molting occurring in the experiments. In the first experiment for both tested mosquito species, LC50 values increased from the second to the fourth instar when tested against temephos, whereas for Bti the opposite trend was observed. The highest LC50 value was found for fourth instars of Cx. pipens (0.00405 mg/liter) against temephos and for second instars of Oc. sticticus (0.267 mg/liter) against Bti. The determined LC50 values for the second and third instars of both species decreased with an increased number of molted larvae in the experiments with temephos. For the experiments with Bti molting did not have any significant influence on LC50 values, except a small increase in toxicity during the L3/L4 molt of Oc. sticticus. These findings could help assess and define larviciding, as well as influence the quantity of larvicides needed for an efficient treatment.
Cerotoma trifurcata Förster (Coleoptera: Chrysomelidae) and Bean pod mottle virus (Comoviridae) (BPMV) both can reduce yield and seed quality of soybean, Glycine max (L.) Merr. Field experiments were conducted to evaluate the effects of systemic, seed-applied, and foliar-applied insecticides for the management of this pest complex at three locations in central, northeastern, and northwestern Iowa during 2002–2004. Seed-applied insecticide was evaluated according to a currently recommended management program for Iowa (i.e., insecticide applications that target emerging overwintered beetles, F0, and the first seasonal generation, F1). The experimental treatments included seed-applied (thiamethoxam, 0.3–0.5 g [AI] kg−1] or clothianidin, 47.32 ml [AI] kg−1) and foliar-applied (λ-cyhalothrin, 16.83–28.05 g [AI] ha−1) or esfenvalerate (43.74–54.69 g [AI] ha−1) insecticides. Applications of the foliar insecticides were timed to target F0, F1 or both F0 and F1 populations of C. trifurcata. Our results confirm that insecticides timed at F0 and F1 populations of C. trifurcata can reduce vector populations throughout the growing season, provide limited reduction in virus incidence, and improve both yield and seed coat color. Furthermore, seed-applied insecticides may be the more reliable option for an F0-targeted insecticide if used within this management strategy. An F0-targeted insecticide by itself only gave a yield improvement in one out of eight location-years. However, by adding an F1-targeted insecticide, there was a yield gain of 1.42–1.67 quintal ha−1, based on contrast comparisons at three location-years.
Artificial aphid diets have been previously developed for the pea aphid, Acyrthosiphon pisum (Harris), and the green peach aphid, Myzus persicae (Sulzer). The ability to rear aphids on an artificial diet allows for selectively adding or subtracting compounds from an aphid’s food source to determine the effect on fecundity and longevity. Five diets previously developed for the green peach aphid and the pea aphid were tested for their suitability for rearing soybean aphid, Aphis glycines Matsumura. The best diet, originally developed for the green peach aphid and based on the amino acid profile of young potato plants, allowed 12 generations of soybean aphids to develop. For all diets tested, aphid fecundity, and longevity were greatly reduced in comparison with aphids reared on soybean, Glycine max (L.) Merr., plants or on detached soybean leaves. In addition, mean developmental time was significantly longer for aphids reared on artificial diets.
Greenhouse experiments were conducted during 2004 and 2005 with male and female Oebalus pugnax (F.) (Hemiptera: Pentatomidae) caged on rice plants at different stages of panicle development with the objective of determining the most attractive stage to O. pugnax. Field-collected insects were released inside cages containing potted plants and observed during morning and afternoon hours for 5 d. Results showed that attractiveness of male and female O. pugnax to plants with panicles at milk and soft dough stages was greater than plants at preheading and heading stages. Preheading plants were the least attractive to the insects, confirming field observations. Results imply that insecticide applications during the preheading stage are likely ineffective and that monitoring efforts during the milk and soft dough stages of panicle development should be intensified.
A study was carried out in 10 counties of North Carolina from 2004 to 2006 to determine the effect of planting and harvest times on flea beetle, Chaetocnema confinis Crotch (Coleoptera: Chrysomelidae), damage to sweetpotato, Ipomoea batatas (L.), storage roots. Planting and harvesting of sweetpotatoes later in the season resulted in less damage than early planting and harvesting. Regression analysis was done to study the relationship of weather parameters with the flea beetle damage. Weather parameters included air temperature (Celsius), soil temperature at 5- and 10-cm depth (Celsius), rainfall (millimeters), and soil moisture (volume:volume) at 0–10-, 10–40-, and 40–100-cm depth. The best regression model included mean soil temperature at 10-cm depth, total rainfall, and number of adults caught on yellow sticky traps as independent variables (all between 1 August and harvest date of each field). Soil temperature and adult catches on yellow sticky traps of C. confinis were positively related to damage, whereas rainfall was negatively correlated. The model explained 45% of the total variation in the flea beetle damage. Soil temperature alone accounted for 32% of the total variation in flea beetle damage followed by rainfall (9%) and adult catches (4%). When the time interval was limited to 30 d before harvest, soil temperature was still the best explanatory variable accounting for 23% of the total variation in flea beetle damage followed by rainfall (7%) and adult catches (4%). Understanding the effects of planting/harvesting and weather factors on flea beetle damage will be useful in predicting the time when the sweetpotato crop is at greater risk from high levels of damage by C. confinis.
A series of tests quantified bollworm, Helicoverpa zea (Boddie), and tobacco budworm, Heliothis virescens (F.), larval survival on plant structures of a nontransgenic cotton (Gossypium hirsutum L.), ‘Coker 312’, and two transgenic cottons expressing Vip3A protein or both Vip3A Cry1Ab proteins (VipCot). Vegetative and reproductive structures including terminal leaves, flower bud (square) bracts, whole debracted squares, flower petals, flower anthers, and intact capsules (bolls) were harvested from plants in field plots. Each structure was infested with 2-d-old larvae from one of the two heliothine species. Larvae were allowed to feed for 96 h on fresh tissue. Survivorship at 96 h after infestation was significantly lower on all structures of Vip3A and VipCot cotton lines compared with similar structures of Coker 312. VipCot plant structures generally resulted in lower larval survivorship compared with similar structures of the Vip3A cotton line. H. zea survivorship ranged from 4 to 28% and from 1 to 18% on Vip3A and VipCot plant structures, respectively. H. virescens survivorship ranged from 10 to 43% and from 2 to 12% on Vip3A and VipCot plant structures, respectively. H. virescens survivorship was higher on VIP3A plant structures compared with that for H. zea on similar structures. These differences between species were not observed on plants from the cotton line expressing VipCot proteins. The results for these plant structures demonstrate that the combination of proteins expressed in VipCot cotton lines are more effective than Vip3A cotton lines against this heliothine complex.
Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.
The superiority of the host monoterpene myrcene as a synergist for trans-verbenol and exo-brevicomin, aggregation pheromone components of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), suggests that the ancestral host of the mountain pine beetle is a pine rich in myrcene. A field trapping experiment in British Columbia testing reconstituted bole oleoresin of whitebark pine, Pinus albicaulis Engelmann, composed of mainly myrcene (20.7%), terpinolene (6.8%), and 3-carene (61.9%) showed it to be a better pheromone synergist than reconstituted bole oleoresin of lodgepole pine, Pinus contorta variety latifolia Engelmann, which contained only 2.7, 1.0, and 6.0%, respectively, of the above-mentioned three compounds. In the same experiment myrcene alone was the best synergist. In subsequent experiments, testing myrcene, terpinolene and 3-carene alone and in all possible binary and ternary combinations, a 50:50 blend of myrcene and terpinolene released at the same rate as either compound alone generally resulted in trap catches ≈3 times higher than with myrcene as a synergist. This result held as long as the terpinolene was free of contaminants, and the traps were in the open, well away from potential interference of semiochemicals emitted by newly attacked trees. 3-Carene seemed to be inert or slightly inhibitory. No single monoterpene tested alone or in binary or ternary combination in the absence of pheromones was attractive. There was no effect of doubling or tripling the release rate of myrcene or terpinolene. In five of nine experiments, adding terpinolene to myrcene caused a significant increase in the percentage of female mountain pine beetles captured. Among host pines, the presence of highly synergistic monoterpenes at various levels in combination with other monoterpenes that are apparently either inert or inhibitory could account for different degrees of pheromone synergism, and thus host preference. The highly synergistic effect of combining myrcene plus terpinolene with the mountain pine beetle aggregation pheromone components opens up the potential for suppression of populations through semiochemical-based mass trapping.
The redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont, Raffaelea sp., are new introductions to the southeastern United States responsible for the wilt of mature redbay, Persea borbonia (L.) Spreng., trees. In 2006 and 2007, we investigated the seasonal flight activity of X. glabratus, its host associations, and population levels at eight locations in South Carolina and Georgia where infestations ranged from very recent to at least several years old. Adults were active throughout the year with peak activity in early September. Brood development seems to take 50–60 d. Wood infested with beetles and infected with the Raffaelea sp. was similar in attraction to uninfested redbay wood, whereas both were more attractive than a nonhost species. Sassafras, Sassafras albidium (Nutt.) Nees, another species of Lauraceae, was not attractive to X. glabratus and very few beetle entrance holes were found in sassafras wood compared with redbay. Conversely, avocado, Persea americana Mill., was as attractive to X. glabratus as swampbay, P. palustris (Raf.) Sarg., and both were more attractive than the nonhost red maple, Acer rubrum L. However, avocado had relatively few entrance holes in the wood. In 2007, we compared X. glabratus populations in areas where all mature redbay have died to areas where infestations were very active and more recent. Trap catches of X. glabratus and numbers of entrance holes in trap bolts of redbay were correlated with the number of dead trees with leaves attached. Older infestations where mature host trees had been eliminated by the wilt had low numbers of beetles resulting in trap catches ranging from 0.04 to 0.12 beetles per trap per d compared with 4–7 beetles per trap per d in areas with numerous recently dead trees. Our results indicate beetle populations drop dramatically after suitable host material is gone and provide hope that management strategies can be developed to restore redbay trees. The lack of attraction of X. glabratus to sassafras suggests that spread of X. glabratus may slow once it is outside the range of redbay.
This study looked at regulated deficit irrigation (RDI) on leafhoppers in the genus Erythroneura (Erythroneura elegantula Osborn, or western grape leafhopper, and Erythroneura variabilis Beamer) (Hemiptera: Cicadellidae), which are serious pests of cultivated grape (Vitis vinifera L.) in California. RDI is an irrigation strategy that reduces irrigation during a critical point in the phenology of a cultivated perennial crop, to improve vegetative balance and crop quality. Erythroneura spp. are known to respond negatively to vine water stress, and the second generation of leafhoppers begins during a potential RDI initiation period, between berry set and veraison (beginning of fruit maturation). In experiments at commercial wine grape vineyards, I imposed deficits of between 25 and 50% of crop full evapotranspiration (ETc) between berry set and veraison, with control treatments based on the growers’ standard irrigations (typically between 0.8 and 1.0 ETc), and then we counted leafhopper nymphs weekly, and leafhopper eggs after the second generation. Results show a consistent reduction of second generation nymphal density with this type of RDI, with average density ≈50% lower under deficit treatments in all three studies. Deficit irrigation reduced second generation egg density by 54% at one site and by 29.9% at another. These results confirm previous studies regarding the sensitivity of Erythroneura spp. to grapevine water stress, and, in addition, they show that a season-wide irrigation deficit is not necessary for reduction in leafhopper density. Results suggest that lower oviposition at least partly explains the lower nymphal density in the deficit treatments.
The moth Prays nephelomima (Meirick) (Lepidoptera: Yponomeutidae) is a significant pest of citrus (Citrus spp.), and the recent identification of the female sex pheromone has enabled new direct control tactics to be considered. Six trap designs were compared for suitability in mass trapping, and Pherocon III delta traps were chosen to further evaluate mass trapping. A mass trapping field trial was carried out at five lemon, Citrus limon L., orchards to determine the effect of trap density on catch and rind spot damage on fruit. One plot (0.33–1.0 ha) of each of the five trap density treatments (3, 10, 30, 100, and 300 traps/ha) were operated at each orchard over 12 wk. Catch per trap was reduced as trap density increased and a mean of 12,000 and 16,000 males per ha were killed at the trap densities of 100 and 300 traps per ha, respectively. Increased trap density reduced the percentage of flowers infested with P. nephelomima larvae and reduced the number of moths emerging from flowers. The incidence of rindspot damage on fruit decreased from 45 to 16% as the density of traps increased from 3 to 100 traps per ha. Incidence (percentage of fruit with rindspot) and severity (number of rindspots per fruit) was similar at 100 and 300 traps per ha, indicating that the optimal trap density for reducing rindspot damage is likely to be between 30 and 100 traps per ha. Prospects for converting mass trapping to a lure and kill system are discussed.
The plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), one of the most important pests of apple (Malus spp.) in eastern and central North America, historically has been managed in New England apple orchards by three full block insecticide applications. Efforts to reduce insecticide inputs against plum curculio include perimeter row sprays, particularly after petal fall, to control immigrating adults. The odor-baited trap tree approach represents a new reduced input strategy for managing plum curculio based on the application of insecticides to a few perimeter-row trap trees rather than the entire perimeter row or full orchard block. Here, we compared the efficacy of a trap tree approach with perimeter row treatments to manage populations after petal fall in commercial apple orchards in 2005 and 2006. Injury was significantly greater in trap trees compared with unbaited perimeter row treated trees in both years of the study. In 2005, heavy rains prevented growers from applying insecticide applications at regular intervals resulting in high injury in nearly all blocks regardless of type of management strategy. In 2006, both the trap-tree and perimeter-row treatments prevented penetration by immigrating populations and resulted in economically acceptable levels of injury. The trap tree management strategy resulted in a reduction of ≈70% total trees being treated with insecticide compared with perimeter row sprays and 93% compared with standard full block sprays.
A 5-mo survey for fruit feeding Lepidoptera attacking Hass and non-Hass avocados (Persea americana Miller [Lauraceae]) was conducted in Guatemala from 1 November 2006 to 1 April 2007. In total, 6,740 fruit were collected from 22 different areas in Guatemala. Eight species of Lepidoptera, of which at least two are species new to science, were reared from avocado fruit. Reared Lepidoptera were Amorbia santamaria Phillips and Powell, Cryptaspasma sp. nr. lugubris, Euxoa sorella Schaus, Histura n. sp., Holcocera n. sp., Micrathetis triplex Walker, Netechma pyrrhodelta (Meyrick), and Stenoma catenifer Walsingham. Hymenopteran parasitoids were reared from larvae of C. sp. nr. lugubris and S. catenifer. One species of parasitoid, Pseudophanerotoma sp., was reared from field collected C. sp. nr. lugubris larvae. The dominant parasitoid reared from S. catenifer was a gregarious Apanteles sp. Other parasitoid species reared from S. catenifer larvae were Brachycyrtus sp., Macrocentrus sp., and Pristomerus sp. The oviposition preference of C. sp. nr. lugubris for avocado fruit hanging in trees, dropped fruit on the ground, or exposed avocado seeds was investigated by studying the oviposition preferences of adult female moths and determining egg hatch times in the laboratory, and by investigating the longevity of avocado fruit on the ground under prevailing field conditions. Together, data from these studies suggested that C. sp. nr. lugubris may be an unrecognized pest of avocados that causes hanging fruit to drop to the ground prematurely. The influence of season and altitude on the phenology and distribution of avocado feeding Lepidoptera in Guatemala is discussed.
Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.
New agricultural techniques are attempting to reduce the application of synthesized pesticides and replace them with new environmentally friendly methods such as mass trapping, mating disruption, or chemosterilization techniques. All these methods are based on the release of a lure for insect attraction or confusion. The success of the chosen method depends on the quality of the attractant emission from the dispenser. Currently, used dispensers with a polymeric matrix and new dispensers with mesoporous inorganic materials were evaluated to obtain more efficient emission kinetics. In this study, the selected pest was the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) and the lure used was trimedlure (TML). The dispensers were validated by means of a field study comparing insect catches with attractant release values. As a result, we have demonstrated that mesoporous dispensers have a clearly longer lifetime than the polymeric plug. Furthermore, the attractant release rate is less dependent on temperature in mesoporous than in polymeric dispensers.
Two aspects of the within-plant distribution of Thrips tabaci Lindeman (Thysanoptera: Thripidae) on onion, Allium cepa L., plants were investigated: 1) diurnal variations in the distribution of adults and larvae between basal and upper sections of onion leaves, and 2) between-leaf and within-leaf distribution of the eggs. The diurnal investigations showed that higher proportions of larvae than of adults congregated at the basal sections of plants, particularly when plants were young and thrips density was low. As plants matured and thrips density increased, the larvae became more dispersed. Regardless of plant size, there were always more adults in the upper than basal plant sections. There were no clear time-windows during the 24-h diurnal cycle when more thrips were in the upper plant parts. T. tabaci eggs were laid everywhere in the plant. Leaves of intermediate ages had more eggs than older or younger leaves. Within leaves, the white leaf sheath received the least eggs and leaf tips received slightly more eggs than leaf sheaths. The highest egg density was found between the green leaf base and the leaf tips. Regardless of plant size, more than half of all eggs were laid above the basal sections. The percentage increased to >95% in mature plants. Except when plants were small the outer leaves were preferred over inner leaves and upper leaf sections preferred over lower leaf sections as egg-laying sites by adults. Implications of the results in the management of T. tabaci are discussed.
In 2000, a severe outbreak of phytoplasma-caused disease in Limonium spp. flowers devastated the industry in Israel; insecticides were not able to knock down and kill leafhopper vectors before they could transmit the pathogen. Nonchoice laboratory studies were conducted to determine the effect of UV-absorbing plastics on the movement of leafhoppers toward light; UV-absorbing plastic significantly reduced leafhopper movement. In choice trials conducted in sunlight, significantly more leafhoppers moved into the cage covered with regular plastic as opposed to the cage covered with UV-absorbing plastic. Field studies were conducted to determine at what height leafhoppers enter 2.5–3-m high walk-in tunnels; the majority enter the tunnels low to the ground, up to 1 m. Finally, field studies were conduced to compare leafhopper population levels in walk-in tunnels covered with UV-absorbing plastic or screening, and with ventilation holes at different heights above the ground. Elevated ventilation holes and UV-absorbing tunnel covering significantly reduced Orosius orientalis entrance into tunnels. Ramifications of these finding for leafhopper control are discussed.
In high-value crops such as apple, Malus × domestica (Borkh.), insecticidal pest control is of high relevance. The use of resistant apple cultivars can increase the sustainability of pest management in apple orchards. Besides variation in plant chemistry that may influence plant resistance by antibiosis or antixenosis, plant growth characteristics also can affect plant susceptibility to pests such as aphids. Variable susceptibility to the apple aphid, Aphis pomi De Geer (Hemiptera: Aphididae), has been described for different apple cultivars. These observations were based on phenotypic surveys and no information on genetically based apple resistance to A. pomi is yet available. The objective of this study was to relate shoot growth characteristics with aphid population development, and to assess the genetic background of apple antibiosis-based resistance to A. pomi by quantitative trait loci (QTL) analysis. Aphid population development was repeatedly studied in the field in sleeve cages attached to 200 apple trees of different genotypes. Aphid population development was positively correlated to shoot length and growth, and it also was affected by climatic conditions. Indications for antibiosis-based resistance to A. pomi remained weak in the studied apple genotypes, and the only detected putative QTL on linkage group 11 of ‘Fiesta’ apples was not stable for the different replications of the experiment. This lack of quantifiable resistance may be partly explained by environmental conditions related to aphid development in sleeve cages.
Pressure from subterranean termites is known to vary geographically across the United States, but there are few quantitative studies concerning the threat of structural infestation for any geographic region. We assessed the number and locations of termite colonies present on 20 infested residential properties in central North Carolina, where subterranean termite pressure is considered to be heavy. This was achieved by using microsatellite markers to determine colony identity of termites collected over 6–14 mo from mud tubes in structures, below-ground monitors, and wood debris in the yard. In total, we identified 188 distinct colonies and determined their breeding structures. Reticulitermes flavipes (Kollar) was by far the most common species, accounting for nearly 90% of all colonies; the remaining colonies belonged to Reticulitermes hageni Banks and Reticulitermes virginicus (Banks). In four cases, there were two colonies infesting a structure simultaneously; in all other cases only a single colony was detected in the structure. Colony densities were high, averaging 62 colonies per ha (25 per acre) with a maximum of 185 colonies per ha (75 colonies per acre). Foraging ranges of R. flavipes and R. hageni colonies were generally small (<30 linear m), and most colonies were headed by a single pair of monogamous reproductives with nearly all the remaining colonies headed by relatively few inbreeding descendants of the original monogamous pair. These results provide the most detailed picture to date of the number, distribution, and colony characteristics of subterranean termite colonies located in and around residential structures.
The insecticidial and biological activity of the cyano-substituted neonicotinoid acetamiprid was determined against the western subterranean termite, Reticulitermes hesperus Banks (Isoptera: Rhinotermitidae). Acetamiprid was very active against termites in topical applications, with an LD50 = 0.02 ng per termite. Even though acetamiprid was extremely toxic in topical applications, deposits ≥50 ppm on sand were required to consistently provide >90% kill of termites within 7 d after a 1-h exposure. Termites were quickly affected by brief exposures to sand treated with 1 ppm acetamiprid and within 1 h, their locomotion was dramatically impaired. Acetamiprid was transferred from donors to recipients only when donors were held on deposits ≥50 ppm for 1 h. Deposits even as low as 1 ppm were repellent and termites failed to tunnel into treated sand, and there was no significant mortality. Exposure to acetamiprid impaired locomotion of termites as did other slow-acting neonicotinoids, such as imidacloprid. Acetamiprid was repellent at all concentrations tested, acting like type I pyrethroid treatments in soil. A new subcategory of type III soil termiticides is proposed that incorporates the sublethal and delayed effects observed in neonicotinoid insecticides, and repellency at certain concentrations.
Hurricane Katrina (2005) resulted in extensive flooding in the city of New Orleans, LA. Periodic sampling of monitors before the flood, and of different monitors in the same areas after the flood, was used to evaluate the effects of long-term flooding on populations of Formosan subterranean termites, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Monitors were located adjacent to buildings and in urban forests. Significant population reductions occurred in areas that flooded 2–3 wk with brackish water, with termite populations associated with pine (Pinus spp.) trees and buildings slower to recover than populations associated with oak trees. Alate production in flooded areas showed no reduction from previous years.
Degradation and bioavailability of imidacloprid, fipronil, and bifenthrin applied at label rates ([AI], wt:wt in soil) in the loamy soil of Nebraska were determined over a 6-mo duration. Based on the calculated half-lives of the three termiticides, it was concluded that the degradation rate was lowest when a termiticide was applied at the highest label rate. Bioassays of Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) conducted at 8, 31, 65, 90, 135, 160, and 180 d posttreatment showed an inverse relationship between the LT90 values and the variable concentrations. At day 180, exposures to all the termiticide-treated soil samples (concentration × termiticide) resulted in 100% mortality of R. flavipes workers. However, lower LT90 values were observed for termites exposed to soils treated with highest label rates even when the treated soils were aged in the lab for 6 mo. This suggested a higher bioavailability of these three termiticides when applied at higher application rates. Termite mortality was fastest for bifenthrin followed by fipronil and imidacloprid.
The toxicity of fatty acid salts to German, Blattella germanica (L.), and American cockroaches, Periplaneta americana (L.), was evaluated. Potassium and sodium laurate caused up to 95% mortality of German cockroaches and 100% mortality of American cockroaches. Even-numbered potassium fatty acid salts, C8–C18, were assessed for toxicity at 0.125, 0.25, 0.5, 1, and 2% concentrations by a 30-s immersion of cockroaches. The more soluble of the fatty acid salts at 2% concentration caused 65–95% mortality of German cockroaches and 100% mortality of American cockroaches. Potassium oleate, C18, was most toxic to both German (LC50 = 0.36%) and American (LC50 = 0.17%) cockroaches. Fatty acid salt solutions on a substrate were tested by placing cockroaches in contact with treated floor tiles immediately after application (wet) or after the solutions had dried. Sodium laurate and potassium caprate caused mortality of German (62 ± 17.4 and 58 ± 12.6%, respectively) and American cockroaches (52 ± 18.5 and 28 ± 4.9%, respectively) on wet tiles, whereas potassium oleate caused mortality of German cockroaches (67 ± 14.1%) only. Dry fatty acids caused no mortality among exposed cockroaches. Fatty acid salt solutions can be effective in killing German and American cockroaches but only when insects are thoroughly wetted with 1–2% fatty acid salt solutions.
The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5–6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs.
Five insecticides used by urban pest management professionals for ant control and three experimental insecticides were tested to determine whether these insecticides were horizontally transferred among individuals in colonies of Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae). Ants were exposed to insecticide-treated sand for 1 min and then placed in a colony of untreated ants. Ants exposed to 20 and 40 ppm fipronil readily transferred the insecticide to other individuals in the colony, resulting in high mortality. Most of the transfer and subsequent mortality occurred within 4 d after exposure to treated ants. The other insecticides were not transferred, and ants exhibited mortality rates similar to that of the controls. Experiments in large foraging arenas demonstrated that necrophoresis was an important behavior facilitating the horizontal transfer of fipronil. When ants contacted contaminated corpses in the process of removing them to refuse piles, they received a lethal dose of fipronil and subsequently died. Fipronil-contaminated dead ants that were placed in the vicinity of the nest resulted in significantly higher mortality than did corpses placed in a distant foraging arena (30 cm away). Most of the dead ants accumulated in the vicinity of the nest rather than in the foraging arena, workers retrieving dead ants to refuse piles from the foraging arena. The position effect of insecticide-contaminated corpses relative to the nest and its implication for Argentine ant control are discussed.
Insects exposed to genetically modified crops expressing Bacillus thuringiensis (Bt) toxins are under intense selection pressure that could result on widespread Bt resistance. Screening for early indications of Bt resistance developing in targeted Lepidoptera is conducted in many of the regions where genetically modified cotton and corn have been commercialized. Heliothis virescens (F.) (Lepidoptera: Noctuidae) has been selected in the laboratory to have a gene for resistance to Cry1Ac. We used this laboratory line to test the assumptions and theoretical predictions related to detection of recessive Bt-resistant alleles in field populations based on a second generation (F2) screen. By creating single-pair families from mating a heterozygous Cry1Ac-resistant moth with a Cry1Ac-susceptible moth, we simulated the most common genotype when Bt-resistance alleles are at low frequency in the field. The second generation (F2) neonates of single-pair families were screened daily with diagnostic concentration bioassays. Cry1Ac-resistant homozygous larvae were detected, but the proportion of resistant larvae was generally below the theoretical expectation of 6.25% and was influenced by the moth F1 sib-mating density and by the day of oviposition of F2 eggs. Logistical considerations such as F1 sib-mating density and F2 neonate screening are important for the successful implementation of a reliable method.
The susceptibilities of larvae of two rice stem borers, namely, Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Sesamia inferens (Walker) (Lepidoptera: Nocutidae) to fipronil and its metabolites were investigated, and then the activities of microsomal O-demethylase, and glutathione transferase (GST) in two species were measured. The metabolism of fipronil in both stem borers was determined in vivo and in vitro. The LD50 value of fipronil to S. inferens was 118.5-fold higher than that of C. suppressalis. The bioassay results of fipronil metabolites showed that the toxicities of sulfone and sulfide were higher than fipronil for both species, and the differential toxicity between sulfone and fipronil was remarkable. Alternatively, the activities of microsomal O-demethylase and GST of C. suppressalis were 1.35- and 2.06-fold higher than S. inferens, respectively. The in vivo and in vitro studies on metabolism of fipronil showed that all of fipronil, sulfone, and sulfide were detected and the content of sulfone was higher than sulfide in both stem borers. The residue of sulfone in C. suppressalis was significantly higher than that in S. inferens. These results suggest that the higher activity of mixed function oxidases may cause the higher capacity of C. suppressalis to produce fipronil-sulfone, which is more toxic than fipronil leading to the higher susceptibility of this species.
The heritability, stability, and fitness costs in a Cry1Ac-resistant Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) colony (AR) were measured in the laboratory. In response to selection, heritability values for AR increased in generations 4–7 and decreased in generations 11–19. AR had significantly increased pupal mortality, a male-biased sex ratio, and lower mating success compared with the unselected parental strain (SC). AR males had significantly more mating costs compared with females. AR reared on untreated diet had significantly increased fitness costs compared with rearing on Cry1Ac treated diet. AR had significantly higher larval mortality, lower larval weight, longer larval developmental period, lower pupal weight, longer pupal duration, and higher number of morphologically abnormal adults compared with SC. Due to fitness costs after 27 generations of selection as described above, AR was crossed with a new susceptible colony (SC1), resulting in AR1. After just two generations of selection, AR1 exhibited significant fitness costs in larval mortality, pupal weight and morphologically abnormal adults compared with SC1. Cry1Ac-resistance was not stable in AR in the absence of selection. This study demonstrates that fitness costs are strongly linked with selecting for Cry1Ac resistance in H. zea in the laboratory, and fitness costs remain, and in some cases, even increase after selection pressure is removed. These results support the lack of success of selecting, and maintaining Cry1Ac-resistant populations of H. zea in the laboratory, and may help explain why field-evolved resistance has yet to be observed in this major pest of Bacillus thuringiensis cotton, Gossypium hirsutum L.
Susceptibility to oxydemeton-methyl and imidacloprid, and the inhibitory effects of oxydemeton-methyl and some organophosphate compounds on acetylcholinesterase (AChE) and carboxylesterase activity were studied in two populations (Karaj and Rasht) of green peach aphids, Myzus persicae (Sulzer). Results show that the Karaj population was resistant to oxydemeton-methyl but susceptible to imidacloprid. The esterase activity of the resistant and susceptible populations suggests that one of the resistance mechanisms to oxydemeton-methyl was esterase-based. The inhibition assay shows that the AChE of the Karaj population is less sensitive to oxydemeton-methyl and paraoxon derivatives. Regarding the paraoxon derivatives, the smaller paraoxon side chain is more potent against the modified AChE than against the AChE from the susceptible strain. Fertility life table parameters of green peach aphid populations resistant and susceptible to oxydemeton-methyl also were studied under laboratory conditions. The standard errors of the population growth parameters were calculated using the Jackknife method. Results showed that susceptible strain exhibits a significantly higher rm than the resistant strain, probably because the resistant strain had a higher generation time than the susceptible strain. These results suggested that the resistant Karaj strain may be less fit than the susceptible strain.
A scintillation glass-vial bioassay was used to test technical grade insecticides against the non-native stink bug Halyomorpha halys (Stål). Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is emerging as an important pest in the Mid-Atlantic States, especially in tree fruits and as a homeowner nuisance during the winter. Pyrethroid insecticides, especially bifenthrin, caused mortality against H. halys at low doses, with LC50 values of 0.03–0.49 (μg [AI]/cm2)(mg body mass−1). Three nicotinoids were tested against adults with LC50 values ranging between 0.05 and 2.64 (μg [AI]/cm2)(mg body mass−1). Phosmet had LC50 values that were up to 3.6-fold higher than other classes of insecticides tested. Fifth instars of H. halys were evaluated against selected chemicals, and they were generally susceptible at lower rates than the adults. Due to significant differences in weight, males and females were individually weighed, tested, and analyzed separately. Sex-related differences in susceptibility were found in the responses to thiomethoxam with males being less susceptible despite having a smaller body mass.
Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae) is a root weevil introduced into the United States from the Caribbean in 1964. It is associated with >300 plants, including citrus, sugarcane, and potatoes. D. abbreviatus is widespread in Florida, and it has recently been detected in limited areas of California and Texas. The purpose of this research is to evaluate the utility of 16S ribosomal (16S rRNA) and cytochrome oxidase I (COI) mitochondrial markers for the delineation of genetic populations of D. abbreviatus in Florida and for the characterization of patterns of dispersion among these populations. We also assessed these markers as genetic tools for the clarification of taxonomic uncertainties in specimens from Dominica (Lesser Antilles). We analyzed 111 weevils from six Florida populations and six specimens from Dominica. In Florida, we found three haplotypes with only one haplotype in each population. Florida haplotypes differed by one to three nucleotide substitutions, possibly the result of a recent divergence from one source population or three different introductions from closely related populations from the Caribbean. In contrast, specimens from Dominica showed a high genetic variability with three 16S haplotypes and six unique COI haplotypes, delineating two mitochondrial clades. We show that these mitochondrial markers are useful for phylogeographic studies of D. abbreviatus.
Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.
Pyrrhalta viburni (Paykull) (Coleoptera: Chrysomelidae), a new landscape pest in the United States, feeds in both the larval and adult stages on foliage of plants in the genus Viburnum. A field trial was conducted from 2004 to 2006 to examine the impact of several elicitors of plant defense on ability of arrowwood viburnum (Viburnum dentatum L.) to resist attack by P. viburni in both larval and adult stages. The treatments included jasmonic acid (JA), harpin, and paclobutrazol. For comparison, imidacloprid and untreated controls were included in the trial. The soil-applied treatments (paclobutrazol and imidacloprid) were applied once during the trial (spring 2004), and the foliarly applied treatments (JA and harpin) were applied each spring. Herbivory by viburnum leaf beetle larvae and adults was measured yearly in spring and summer, respectively, and plant height was recorded at the end of each growing season. The only treatment that decreased feeding by viburnum leaf beetle was imidacloprid; these plants were virtually untouched throughout the duration of the trial. Plants treated with JA and harpin actually suffered greater feeding damage at the end of the second growing season; other than this observation, the elicitors had no impact on viburnum leaf beetle. As expected, plant height was decreased for the shrubs treated with paclobutrazol, a plant growth regulator, and unaffected by JA and harpin. Plant height was increased for the shrubs treated with imidacloprid. These shrubs also seemed to be protected from viburnum leaf beetle after residues dropped below lethal levels.
The development of superior soybean, Glycine max (L.) Merr., cultivars exhibiting resistance to insects has been hindered due to linkage drag, a common phenomenon when introgressing alleles from exotic germplasm. Simple-sequence repeat (SSR) markers were used previously to map soybean insect resistance (SIR) quantitative trait loci (QTLs) in a ‘Cobb’ × PI 229358 population, and subsequently used to create near-isogenic lines (NILs) with SIR QTL in a ‘Benning’ genetic background. SIR QTLs were mapped on linkage groups (LGs) M (SIRQTL-M), G (SIRQTL-G), and H (SIRQTL-H). The objectives of this study were to 1) evaluate linkage drag for seed yield by using Benning-derived NILs selected for SIRQTL-M, SIRQTL-H, and SIRQTL-G; 2) assess the amount of PI 229358 genome surrounding the SIR QTL in each Benning NIL; and 3) evaluate the individual effects these three QTLs on antibiosis and antixenosis to corn earworm, Helicoverpa zea (Boddie), and soybean looper, Pseudoplusia includens (Walker). Yield data collected in five environments indicated that a significant yield reduction is associated with SIRQTL-G compared with NILs without SIR QTL. Overall, there was no yield reduction associated with SIRQTL-M or SIRQTL-H. A significant antixenosis and antibiosis effect was detected for SIRQTL-M in insect feeding assays, with no effect detected in antixenosis or antibiosis assays for SIRQTL-G or SIRQTL-H without the presence of PI 229358 alleles at SIRQTL-M. These results support recent findings concerning these loci.
The abundance and spatial dispersion of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) were studied in 34 grapefruit (Citrus paradisi Macfad.) and six sweet orange [Citrus sinensis (L.) Osbeck] orchards from March to August 2006 when the pest is more abundant in southern Texas. Although flush shoot infestation levels did not vary with host plant species, densities of D. citri eggs, nymphs, and adults were significantly higher on sweet orange than on grapefruit. D. citri immatures also were found in significantly higher numbers in the southeastern quadrant of trees than other parts of the canopy. The spatial distribution of D. citri nymphs and adults was analyzed using Iowa’s patchiness regression and Taylor’s power law. Taylor’s power law fitted the data better than Iowa’s model. Based on both regression models, the field dispersion patterns of D. citri nymphs and adults were aggregated among flush shoots in individual trees as indicated by the regression slopes that were significantly >1. For the average density of each life stage obtained during our surveys, the minimum number of flush shoots per tree needed to estimate D. citri densities varied from eight for eggs to four flush shoots for adults. Projections indicated that a sampling plan consisting of 10 trees and eight flush shoots per tree would provide density estimates of the three developmental stages of D. citri acceptable enough for population studies and management decisions. A presence–absence sampling plan with a fixed precision level was developed and can be used to provide a quick estimation of D. citri populations in citrus orchards.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is capable of reducing soybean, Glycine max (L.) Merr., yield up to 40% during severe outbreaks. Frequent sampling, which can be costly and time-consuming, is essential to making informed management decisions. However, one way to decrease sampling effort is to use a reduced sample unit when possible. The objectives of this study were to describe the vertical distribution of soybean aphid within soybean over time and to define node-based sample units of varying sizes by testing the ability of selected units to accurately estimate whole-plant aphid density. Within-plant distribution of soybean aphid changed significantly with time. However, the average nodal position where soybean aphids were found on soybean remained within the top half of the plant at all three locations studied across all sample dates. Consequently, selecting the node with the highest aphid density multiplied by the total number of infested nodes (NMAX′) was the best predictor of aphids on remaining soybean components in both the original (r2 = 0.855) and validation (r2 = 0.824) data sets. For sample units that included more than a single node to estimate densities, a weighted formula, which incorporated changes observed in the within-plant aphid distribution, improved model performance (higher r2 values) and reduced variability around parameter estimates compared with a node-averaged formula. Our results suggest that smaller sample units provide reliable estimations of whole-plant aphid density throughout the growing season for differently maturing soybean, which is essential to their use in pest management decisions and development of future sampling plans.
The cost-reliability of five sampling methods (visual search, drop cloth, beat bucket, shake bucket, and sweep net) was determined for four groups of predatory arthropods on cotton plants in Texas. The beat bucket sample method was the most cost-reliable sampling method for Orius adults, and the beat bucket and drop cloth were the most cost-reliable methods for Orius nymphs. The drop cloth and beat bucket were the most cost-reliable methods for sampling spiders. For sampling adult Coccinellidae, the sweep net and the beat bucket were the most cost-reliable. The visual sample method was the least cost-reliable method for Orius adults and nymphs and spiders. No one sampling method was identified as the optimum method for all four predator groups. However, the relative cost-reliability of the beat bucket method ranked first or second among the five sampling methods and this method was chosen for further evaluation in field studies in Texas and Arizona. The relative cost-reliability of 1-, 3-, 5-, and 10-plants per beat bucket sample varied with predator group, but multiple plant sample units were equal to or more cost-reliable than the one plant sample unit. Fixed sample plans for the beat bucket method were developed for Orius adults, Orius nymphs, spiders, and adult Coccinellidae, and the sum of these groups using the 3-, 5-, and 10-plant sample unit sizes. The greater cost-reliability of the beat bucket sampling method and its ease of use is of particular advantage in assessing predator densities in a commercial cotton field monitoring program.
A multiplex polymerase chain reaction (PCR) method was applied to differentiate thelytokous and arrhenotokous strains of Neochrysocharis formosa (Westwood). Alignment of strain first internal transcribed spacer regions revealed high nucleotide variability and the strain-specific primer sequence used. Strains were easily differentiated after gel electrophoresis of multiplex PCR products because arrhenotokous specimens produced a 500-bp fragment as well as the 800-bp fragment common to both strains. This method successfully distinguished N. formosa strains regardless of collection site across Japan; thus, it is probably suitable for similar applications in Turkey, Italy, and elsewhere.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere