Jingfei Huang, Sufen Tian, Ke Ren, Yong Chen, Shuo Lin, Yixin Chen, Houjun Tian, Jianwei Zhao, Changfang Wang, Hui Wei, Xiaojun Gu
Journal of Economic Entomology 113 (3), 1419-1425, (16 March 2020) https://doi.org/10.1093/jee/toaa041
KEYWORDS: Plutella xylostella, 3-octylthio-1,1,1-trifluoropropan-2-one, diafenthiuron, indoxacarb, Bacillus thuringiensis (Bt)
The diamondback moth, Plutella xylostella (L.), is a worldwide insect pest of cruciferous crops. Although insecticides have long been used for its control, diamondback moth rapidly evolves resistance to almost any insecticide. In insects, juvenile hormone (JH) is critically involved in almost all biological processes. The correct activity of JH depends on the precise regulation of its titer, and juvenile hormone esterase (JHE) is the key regulator. Thus, JH and JHE have become important targets for new insecticide development. Trifluoromethyl ketones are specific JHE inhibitors, among which 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP) has the highest activity. The interaction effects between pretreatment with or combination of OTFP and the insecticides diafenthiuron, indoxacarb, and Bacillus thuringiensis (Bt) were investigated in diamondback moth larvae to determine OTFP's potential as an insecticide synergist. In third-instar larvae, both pretreatment and combination treatment with OTFP decreased or antagonized the toxicities of diafenthiuron, indoxacarb, and Bt at all set concentrations. In fourth-instar larvae, combination treatment with OTFP decreased or antagonized the toxicities of diafenthiuron and indoxacarb at all set concentrations. However, it increased or synergized the toxicity of Bt at lower concentrations despite the limited effect at higher concentrations. Our results indicated that the effect of OTFP on the toxicities of insecticides varied with the type and concentration, larval stage, and treatment method. These findings contribute to the better use of OTFP in diamondback moth control.