In recent years, black soldier fly, Hermetia illucens (L.), larvae have attracted increasing attention because of their high capacity for bioconversion of diverse organic material into high-quality protein and lipids. Although previous studies have focused on optimization of breeding conditions, such as the acceptance of substrates, and temperatures and moisture contents, little is known about light-dependent adult development. Artificial light sources are important to commercial H. illucens breeding, especially at latitudes with short days in autumn and winter months. We examined how 3,000, 4,000, and 6,500 K color temperatures affect aspects of oviposition. Mating occurred under all of the broad spectrum light-emitting diode panels, resulting in fertilized egg clusters. Oviposition lasted up to 15 d, while the shortest oviposition period, in the 3,000 K light treatment, was 2 d. Total oviposition performance and oviposition period were not affected by the light treatments. Oviposition peaked 1–7 d after eggs were first deposited. The time until oviposition peaked was positively correlated with increasing color temperature.