BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Twelve rugose coral species belonging to seven genera are described and discussed based on 70 thin sections of 32 specimens collected from the Anarak section, northeast of Nain, Esfahan Province, Yazd Block, central Iran. These species include two new colonial rugose coral species, Antheria fedorowskii and Antheria robusta, and five previously named species of colonial rugose corals, Antheria lanceolata and Streptophyllidium scitulum, and solitary rugose corals, Arctophyllum jiangsiense, Caninophyllum cf. somtaiense, and Pseudotimania delicata. Five species are left in open nomenclature: Antheria sp., Arctophyllum sp., Caninophyllum sp., Nephelophyllum sp., and Yakovleviella sp. These Iranian corals are associated with the fusulinids Rauserites (several species) and Ultradaixina bosbytauensis, indicating a latest Carboniferous age (Gzhelian age). All the described genera and named species belong to the families Aulophyllidae, Bothrophyllidae, Cyathopsidae, and Kepingophyllidae, among which the family Kepingophyllidae has been previously documented only from China and Indochina. They are typical representatives of the Cathaysian rugose fauna, which was widely developed around the South China and Indochina blocks near the paleoequator and was absent from the Gondwanan and Cimmerian continents in high latitudes during the Late Pennsylvanian. Hence, the occurrence of the Cathaysian fauna from central Iran in the latest Carboniferous suggests that itmay have had a close biogeographical connection with China and Indochina, which further implies its latitudinal position intermediate between the Gondwanan continent and South China and Indochina blocks during this time.
In this contribution we describe and illustrate 14 coral morphospecies collected from the early Miocene Siamaná (Aquitanian–Burdigalian) and Jimol (late Burdigalian) formations of the Cocinetas Basin in La Guajira Peninsula, northern Colombia. Eleven were identified as already established species including seven genera belonging to the families Mussidae, Pocilloporidae, Poritidae, Siderastreidae, and Milleporidae; the other three remain in open nomenclature. Nine of the 11 species identified (81%) are extinct. The remaining two living species, Siderastrea siderea and Millepora alcicornis, are common on modern Caribbean reefs. Their presence in the Siamaná Formation extends their temporal range in the Caribbean region to the early Miocene. Most of the taxa described here were hermatypic and zooxanthellate corals of the order Scleractinia, with the exception of the fire coral Millepora alcicornis, of the order Anthothecata, family Milleporidae. The coral fauna recorded in the Siamaná and Jimol formations is typical of shallow and calm waters of the Oligocene–Miocene transition.
An assemblage of Cambrian Series 2, Stages 3–4, conchiferan mollusks from the Shackleton Limestone, Transantarctic Mountains, East Antarctica, is formally described and illustrated. The fauna includes one bivalve, one macromollusk, and 10 micromollusks, including the first description of the species Xinjispira simplexZhou and Xiao, 1984 outside North China. The new fauna shows some similarity to previously described micromollusks from lower Cambrian glacial erratics from the Antarctic Peninsula. The fauna,mainly composed of steinkerns, is relatively low diversity, but the presence of diagnostic taxa, including helcionelloid Davidonia rostrata (Zhou and Xiao, 1984), bivalve Pojetaia runnegariJell, 1980, cambroclavid Cambroclavus absonus Conway Morris in Bengtson et al., 1990, and bradoriid Spinospitella coronataSkovsted et al., 2006, as well as the botsfordiid brachiopod Schizopholis yorkensis (Ushatinskaya and Holmer in Gravestock et al., 2001), in the overlying Holyoake Formation correlates the succession to the Dailyatia odyssei Zone (Cambrian Stages 3–4) in South Australia.
The first report of the Hirnantia high-latitude peri-Gondwanan Fauna from Portugal (Upper Ordovician, Ribeira do Braçal Formation) is presented here. The described macroassemblages are fairly diverse containing fossils of brachiopods, trilobites, echinoderms, machaeridians, and ostracodes. Among the brachiopods, the most abundant is Mirorthis mira. Plectothyrella cf. P. libyca, Paromalomena cf. P. polonica, Plectoglossa? sp., and a small indeterminate discinoid are also present. The trilobites are represented by abundant sclerites of Mucronaspis cf. M. mucronata, and an isolated cranidium and pygidium assigned to Flexicalymene. The occurrence of Mucronaspis and Flexicalymene represents the first record of these genera in Portugal. Echinoderms are dominant in the basal bed of the formation; the columnal plates tentatively ascribed to morphogenus Pentagonocyclicus are the most abundant, followed by the echinosphaeritids. Abundant disarticulated machaeridian plates, of the genus Plumulites, associated with trilobites are present in one of the localities. Ostracodes were found in one single locality and have been assigned tentatively to the genus Herrigia. Ramose and massive bryozoans also occur in the assemblage. This new macrofossil assemblage supports the assignment of an Hirnantian age for the Ribeira do Braçal Formation. Most of the brachiopod species and the dalmanitid Mucronaspis are commonly present in Hirnantian deposits globally, but the presence in the assemblage of a brachiopod close to Plectothyrella libyca, a cold-water species, previously reported only from the Hirnantian of Libya and Morocco, is noticeable. This strengthens the case for a high latitudinal setting of the present-day territory of the Portuguese Central Iberian Zone during the Late Ordovician.
The biofacies of the Lower Palmatolepis rhenana Biozone to Palmatolepis triangularis Biozone in the Mae Sariang section, northwestern Thailand, are marked by alternations of Palmatolepis-dominated biofacies and Polygnathus-dominated biofacies related to fluctuations in seawater depth. Fine-grained limestone accumulated through the Lower Palmatolepis rhenana Biozone, Upper Palmatolepis rhenana Biozone, Palmatolepis linguiformis Biozone, Palmatolepis subperlobata Biozone, and Palmatolepis triangularis Biozone. A regression in the Upper rhenana Zone was followed by a recovery transgression that extended up through the linguiformis Zone. Conodont faunas increased until near the end of the linguiformis Zone, but in the overlying subperlobata Zone and triangularis Zone, conodont numbers dropped and most conodont species disappeared. It is possible the event coincides with a glacially forced regression, but there is no evidence of this in the section apart from a positive spike in δ13C. Another possible cause of the global marine extinction event is toxic levels of metals resulting from widespread volcanism. New taxa in this paper are Palmatolepis chaemensis new species, Palmatolepis thamensis new species, and Polygnathus tenellus surinensis new subspecies.
Abundant platform-bearing gondolellid conodonts, including Scythogondolella mosheri (Kozur and Mostler), Sc. phryna Orchard and Zonneveld, and Sc. cf. milleri (Müller), have been discovered from the Yiwagou Section of Tewo, together with Novispathodus waageni waageni (Sweet) and Nv. w. eowaageni Zhao and Orchard. This is the first report of Smithian platform-bearing gondolellids from the Paleo-Tethys region. In addition, Eurygnathodus costatus Staesche, E. hamadai (Koike), Parafurnishius xuanhanensis Yang et al., and the genera Pachycladina Staesche, Parachirognathus Clark, and Hadrodontina Staesche have also been recovered from Dienerian to Smithian strata at Yiwagou Section. Three conodont zones are established, in ascending order: Eurygnathodus costatus-E. hamadai Assemblage Zone, Novispathodus waageni-Scythogondolella mosheri Assemblage Zone, and the Pachycladina-Parachirognathus Assemblage Zone.
The platform-bearing gondolellids were globally distributed just after the end-Permian mass extinction, but the formerly abundant Clarkina Kozur disappeared in the late Griesbachian. Platform-bearing gondolellids dramatically decreased to a minimum of diversity and extent in the Dienerian before recovering in the Smithian. Scythogondolella Kozur, probably a thermophilic and eurythermic genus, lived in all latitudes at this time whereas other genera did not cope with Smithian high temperatures and so became restricted to the high-latitude regions. However, the maximum temperature in the late Smithian likely caused the extinction of almost all platform-bearing gondolellids. Finally, the group returned to equatorial regions and achieved global distribution again in the cooler conditions of the late Spathian. We conclude that temperature (and to a lesser extent oxygen levels) exerted a strong control on the geographical distribution and evolution of platform-bearing gondolellids in the Early Triassic.
Cretaceous aquatic ecosystems were amazingly diverse, containing most clades of extant aquatic vertebrates as well as an array of sharks and rays not present today. Here we report on the chondrichthyan fauna from the late Maastrichtian site that yielded the Tyrannosaurus rex skeleton FMNH PF 2081 (“SUE”). Significant among the recovered fauna is an unidentified species of carcharhinid shark that adds to the fossil record of this family in the Cretaceous, aligning with estimates from molecular evidence of clade originations. Additionally, a new orectolobiform shark, here named Galagadon nordquistae n. gen. n. sp., is diagnosed on the basis on several autapomorphies from over two-dozen teeth. Common chondrichthyan species found at the “SUE” locality include Lonchidion selachos and Myledaphus pustulosus. Two phylogenetic analyses (Maximum Parsimony and Bayesian Inference) based on twelve original dental character traits combined with 136 morphological traits from a prior study of 28 fossil and extant taxa, posited Galagadon n. gen. in two distinct positions: as part of a clade inclusive of the fossil species Cretorectolobus olsoni and Cederstroemia triangulata plus extant orectolobids from the Maximum Parsimony analysis; and as the sister taxon to all extant hemiscyllids from the Bayesian Inference. Model-based biogeographical reconstructions based on both optimal trees suggest rapid island hopping-style dispersal from the Western Pacific to the Western Interior Seaway of North America where Galagadon n. gen. lived. Alternatively, the next preferred model posits a broader, near-global distribution of Orectolobiformes with Galagadon n. gen. dispersing into its geographic position from this large ancestral range.
Lungfish are a poorly represented component of the Mesozoic fossil record in North America, as most lungfish fossils consist of rare, isolated dental plates that are of little diagnostic value due to their conservative nature. In eastern North America, the paucity of lungfish fossils in Late Cretaceous strata is further compounded by the occurrence of geologic units that are primarily marine in origin, unlike the Late Jurassic to mid-Cretaceous fluvial deposits of the American west that contain comparatively more specimens. Lungfish fossils from the eastern side of the Late Cretaceous Western Interior Seaway (Appalachia) have previously been reported from the Cenomanian Woodbine Formation of northeast Texas and the Campanian Mount Laurel Formation of New Jersey. Herewe report two new occurrences of eastern North American lungfish tooth plates from the Santonian Eutaw Formation of Alabama and Mississippi. These two specimens are referred to Ceratodus frazieriOstrom, 1970 and Ceratodus carteriMain et al., 2014, species that are better known from the mid-Cretaceous of the Western Interior of North America. This discovery is the first published record of lungfish of any age from the states of Alabama and Mississippi. It partially bridges the temporal gap in the fossil record between the Cenomanian lungfish of Texas and the Campanian lungfish of New Jersey and extends the biogeographic range of Late Cretaceous lungfish to the eastern Gulf Coastal Plain of the United States.
The Flat Rocks locality in theWonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarctica. Known from its dentary, Qantassaurus intrepidusRich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod, Galleonosaurus dorisae n. gen. n. sp. from craniodental remains. Five ornithopodan genera are now named from Victoria. Galleonosaurus dorisae n. gen. n. sp. is known from five maxillae, from which the first description of jaw growth in an Australian dinosaur is provided. The holotype of Galleonosaurus dorisae n. gen. n. sp. is the most complete dinosaur maxilla known from Victoria. Micro-CT imagery of the holotype reveals the complex internal anatomy of the neurovascular tract and antorbital fossa.We confirm that Q. intrepidus is uniquely characterized by a deep foreshortened dentary. Two dentaries originally referred to Q. intrepidus are reassigned to Q. ?intrepidus and a further maxilla is referred to cf. Atlascopcosaurus loadsiRich and Rich, 1989. A further ornithopod dentary morphotype is identified, more elongate than those of Q. intrepidus and Q. ?intrepidus and with three more tooth positions. This dentary might pertain to Galleonosaurus dorisae n. gen. n. sp. Phylogenetic analysis recovered Cretaceous Victorian and Argentinian nonstyracosternan ornithopods within the exclusively Gondwanan clade Elasmaria. However, the large-bodied taxon Muttaburrasaurus langdoniBartholomai and Molnar, 1981 is hypothesised as a basal iguanodontian with closer affinities to dryomorphans than to rhabdodontids.
A new species of the Paleozoic bryozoan genus Ptilotrypa of the order Cryptostomata is described from the lower part of the Yong Limestone Formation, Katian, Upper Ordovician of the Kumaun Tethys Himalaya: Ptilotrypa bajpaii new species. The presence of the genus Ptilotrypa in the Tethyan Himalaya suggests paleogeographic connections to the Upper Ordovician of North America and, consequently, Upper Ordovician age for the lower part of the Yong Limestone Formation. This species displays a reticulate colony shape, which suggests an efficient filtering capacity in an environment with a high primary production. Morphological peculiarities and systematic assignment of the genus Ptilotrypa are discussed.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere