Research on forest phenology is an important parameter related to climate and environmental changes. An optical camera was used as a near-earth remote sensing satellite device to obtain forest images, and the data of Green excess index (GEI) in the images were calculated, which was fitted with the seasonal variation curve of GEI data by double Logistic method and normalization method. LSTM and GRU deep learning models were introduced to train and test the GEI data. Moreover, the rationality and performance evaluation of the deep learning model were verified, and finally the model predicted the trend of GEI data in the next 60 days. Results showed: In the aspects of forest phenology training and prediction, GRU and LSTM models were verified by histograms and autocorrelation graphs, indicating that the distribution of predicted data was consistent with the trend of real data, LSTM and GRU model data were feasible and the model was stable. The differences of MSE, RMSE, MAE and MAPE between LSTM model and GRU model were 0.0014, 0.013, 0.008 and 5.26%, respectively. GRU had higher performance than LSTM. The prediction of LSTM and GRU models about GEI data for the next 60 days both showed a trend chart consistent with the change trend of GEI data in the first half of the year. GRU and LSTM were used to predict GEI data by deep learning model, and the response of LSTM and GRU deep learning models in forest phenology prediction was realized, and the performance of GRU was better than that of LSTM model. It could further reveal the growth and climate change of forest phenology in the future, and provide a theoretical basis for the application of forest phenology prediction.
How to translate text using browser tools
12 December 2022
Research on Forest Phenology Prediction Based on LSTM and GRU Model
Guan Peng,
Zheng Yili
ACCESS THE FULL ARTICLE
forest phenology
GEI
GRU model
LSTM model
prediction