Vincent Bichet, Emilie Gauthier, Charly Massa, Bianca B. Perren
Journal of the North Atlantic 2014 (sp6), 47-63, (1 April 2014) https://doi.org/10.3721/037.002.sp606
Palaeoenvironmental studies from continental and marine sedimentary archives have been conducted over the last four decades in the archaeologically rich Norse Eastern Settlement in Greenland. Those investigations, briefly reviewed in this paper, have improved our knowledge of the history of the Norse colonization and its associated environmental changes. Although deep lakes are numerous, their deposits have been little used in the Norse context. Lakes that meet specific lake-catchment criteria, as outlined in this paper, can sequester optimal palaeoenvironmental records, which can be highly sensitive to both climate and/or human forcing. Here we present a first synthesis of results from a well-dated 2000-year lake-sediment record from Lake Igaliku, located in the center of the Eastern Settlement and close to the Norse site Garðar. A continuous, high-resolution sedimentary record from the deepest part of the lake provides an assessment of farming-related anthropogenic change in the landscape, as well as a quantitative comparison of the environmental impact of medieval colonization (AD 985—ca. AD 1450) with that of recent sheep farming (AD 1920—present). Pollen and non-pollen palynomorphs (NPPs) indicate similar magnitudes of land clearance marked mainly by a loss of tree-birch pollen, a rise in weed taxa, as well as an increase in coprophilous fungi linked to the introduction of grazing livestock. During the two phases of agriculture, soil erosion estimated by geochemical proxies and sediment-accumulation rate exceeds the natural or background erosion rate. Between AD 1010 to AD 1180, grazing activities accelerated soil erosion up to ≈8 mm century-1, twice the natural background rate. A decrease in the rate of erosion is recorded from ca. AD 1230, indicating a progressive decline of agro-pastoral activities well before the end of the Norse occupation of the Eastern Settlement. This decline could be related to possible climate instabilities and may also be indirect evidence for the shift towards a more marine-based diet shown by archaeological studies. Mechanization of agriculture in the 1980s caused unprecedented soil erosion up to ≈21 mm century-1, five times the pre-anthropogenic levels. Over the same period, diatom assemblages show that the lake has become steadily more mesotrophic, contrary to the near-stable trophic conditions of the preceding millennia. These results reinforce the potential of lake-sediment studies paired with archaeological investigations to understand the relationship between climate, environment, and human societies.