Bachman's sparrow (Aimophila aestivalis), a near endemic songbird of the longleaf pine (Pinus palustris) ecosystem, is known to respond positively to prescribed fires. The influence of season (growing vs. dormant) and frequency (1 to ≥4 yr since burning) of fire on density of Bachman's sparrows, however, is poorly understood. We examined effects of fire on density of Bachman's sparrows in longleaf pine forests at the Conecuh National Forest, Alabama, and Blackwater River State Forest, Florida, USA. Density of Bachman's sparrows was greater the first 3 years after burning than ≥4 years after burning, and season of burning had little effect on the density of Bachman's sparrows. Percent coverage by grass had a greater influence on density of Bachman's sparrows than either season or frequency of burning. Percent canopy cover had a strong negative effect on coverage of grass but had a weaker effect on grass at stands burned frequently during the growing season. Growing-season fires (Apr–Sep) did not adversely affect density of Bachman's sparrows. Results from our study suggest that management and restoration of longleaf pine communities probably can be accomplished best by burning on a 2–3-year rotation during the growing season, when most fires historically occurred. Suppression of fire, or burning at intervals >4–5 years, will greatly reduce or eliminate habitat required by Bachman's sparrows.