Open Access
How to translate text using browser tools
29 June 2023 A synopsis of bryophyte-lichen syntaxa in the Netherlands
Marcel Schrijvers-Gonlag, Klaas van Dort
Author Affiliations +
Abstract

We present a first complete overview of the bryophyte-lichen syntaxa in the Netherlands, including diagnostic species and Red List status of vegetations representing each (sub)association. The classification is based on more than 5000 Dutch vegetation relevés, the majority recorded after the year 2000. Whenever appropriate, we integrated bryophyte and lichen syntaxonomy. The Dutch list of bryolichenosociological units consists of 168 syntaxa: 16 classes, 27 orders, 37 alliances, 82 associations and 6 subassociations. We present synoptic tables of 13 newly described syntaxa: two alliances, nine associations and two subassociations. Finally, we present ranges of the abiotic habitat variables moisture, light availabilty, nutrient richness and acidity on class level, based on estimated values of diagnostic species of individual associations in each class.

Introduction

Syntaxonomic work on plants in the Netherlands started shortly before 1930 (Sýkora and Sýkora 1987). Few years later some young syntaxonomists developed an ardent bryological interest (Harmsen 1999). However, when Beijerinck (1934) published a booklet entitled ‘Sphagnum en Sphagnetum' the term Sphagnetum – though labeled as an ‘independent association’ – was not used in a standardised syntaxonomic way. In early Dutch syntaxonomical literature several bryophyte and lichen species were mentioned as important diagnostic (character or differential) species, e.g. the liverworts Fossombronia dumortieri (today F. foveolata) and F. wondraczeki (today F. wondraczekii) (Cicendietum filiformis Allorge’22, Nanocyperion flavescentis W.Koch’26), the mosses Brachythecium rivulare and Philonotis fontana (Cardamineto-Montion Br.-Bl.’26) and the lichens Cladonia uncialis, C. squamosa, C. gracilis, C. chlorophaea, C. sylvatica (today C. arbuscula) and Cornicularia aculeata (today Cetraria aculeata) (Ericetum tetralicis Schwickerath’33 cladonietosum Tx. ‘37, Rhynchosporion albae W.Koch’26) (Westhoff et al. 1942). Publications on bryosociological and lichenosociological studies remained scarce in the Netherlands until Barkman published his voluminous study on phytosociology of cryptogamic epiphytes in Europe (Barkman 1958). In later years, most Dutch bryosociological studies focused on non-epiphytic communities, e.g. thatched roofs (Ringelberg-Giesen 1958), springs and rivulets (Maas 1959, Weeda 1994), inland dunes and heaths (Touw 1963, 1969, Hovenkamp 1975), coastal dunes (Boerboom 1960, Coesel 1963, During 1973, Bruin et al. 1999), peat banks (Barkman 1989), and epilithic communities (Kruijsen 1982, Greven 1990). Considerably less Dutch lichenosociological studies were published during this period, Barkman (1969), Masselink (1994) and Spier and Aptroot (2000). At the end of the twentieth century, the vegetation in the Netherlands was phytosociologically described in detail (Schaminée et al. 1995a, 1995b, 1996, 1998, Stortelder et al. 1999), and updated in 2017 (Schaminée et al. 2017). In the latter six publications, 46 classes were described, the vast majority of associations dominated by vascular plants, although many bryophytes and some lichens and algae were incorporated as diagnostic species. Incidentally, bryophyte-dominated syntaxa were incorporated within vascular plant classes, e.g. Pellio-Conocephaletum Maas 1959 and Pellio endiviifiliae-Cratoneuretum commutati Rivola 1982 (Montio-Cardaminetea Braun-Blanquet et Tüxen 1943), Didymodon recurvirostris-Tortella flavovirens-ass. – today Tortello-Bryoerythrophylletum Boerboom 1960 (Koelerio-Corynephoretea Klika in Klika et Novák 1941), and Sphagnetalia medii Kästner et Flössner 1933 (preferred over Sphagnetalia magellanici Kästner et Flössner 1933 as Sphagnum magellanicum is not present in Europe; Hassel et al. 2018) (Oxycocco-Sphagnetea Braun-Blanquet et Tüxen ex Westhoff et al. 1946) (Maas 1959, Boerboom 1960, Schaminée et al. 1995b, 1996, 2017). Shortly before 2000, Siebel and Van Dort published a list of bryophyte syntaxa which were known from the Netherlands (Van Dort and Siebel 1995, Siebel and Van Dort 1999). No such lists existed for lichen syntaxa at that time.

Many authors studied vegetation communities dominated by bryophytes separately from lichen-dominated communities (for example, bryophyte communities: Demaret 1939, Von Hübschmann 1953, 1986, Philippi 1965, Lecointe 1978, Messe 1982, Drehwald and Preising 1991, Dierßen 2001, Bardat and Hauguel 2002, Schlüsslmayr 2005, Marstaller 2006, Schubert 2009; lichen communities: Klement 1955, Massé 1964, Delzenne-Van Haluwyn 1976; James et al. 1977, Wirth 1980, 1995, Roux 1981, Drehwald 1993, Schubert and Stordeur 2011). However, these two species groups have not always been separated strictly, as expressed by the name of the cryptogam class Cladonio digitatae-Lepidozietea reptantis Ježek and Vondráček 1962, a class including an alliance with diagnostic bryophyte species (Tetraphidion pellucidae Von Krusenstjerna 1945) and an alliance with diagnostic lichen species (Cladonion coniocraeae Duvigneaud ex James et al. 1977). One of the arguments against the separate treatment of bryophyte syntaxa and lichen syntaxa is that some lichen groups show a strong ecological (notably the genus Peltigera) or physiological (particularly the genera Leptogium, Collema, Parmeliella; Barkman 1958) resemblance with bryophytes. Barkman (1958), though keeping lichen syntaxa apart from bryophyte syntaxa, even placed an alliance characterized by at least 19 lichen taxa Lobarion pulmonariae in a bryophyte order Neckeretalia pumilae on ecological and physiological grounds. Recently, Mucina and colleagues (2016) published separate lists of vascular plant communities, bryophyte communities, lichen communities and algal communities of Europe, based on Braun-Blanquet syntaxonomy. However, they state that “an important future task will be combining bryophyte and lichen (and algal) communities into one consistent syntaxonomic system” (Mucina et al. 2016).

Since Barkman's publication in 1958, both species presences and frequencies have changed. For example, bryophyte species density in Dutch forests has increased considerably in the period 1984–1994 (Dirkse and Martakis 1998). The classification of Dutch vegetation relevés, the majority recorded after the year 2000, resulted in the first complete overview of bryophyte-lichen syntaxa of the Netherlands (Van Dort et al. 2017). When appropriate, we joined previously described bryophyte and lichen phytosociological units. Our bryolichenosociological study included synoptic tables and ecological information (Van Dort et al. 2017). Additionally, we used actualized distribution data and Red List status of character species (Aptroot et al. 2011, Siebel et al. 2013, BLWG 2017) to assess the distribution, trend, rarity and Red List status of vegetations representing each (sub)association on a national level (Schrijvers-Gonlag et al. 2018). In the current paper, we present the full list of current Dutch bryophyte-lichen syntaxa and for each (sub)association the Red List status of corresponding vegetations. To put the bryophyte-lichen vegetation in the Netherlands in an international context, we make some comparisons with syntaxa elsewhere in Europe. We present synoptic tables for 13 newly described syntaxa. Additionally, we present graphical information about the abiotic habitat variables moisture, light availabilty, nutrient richness and acidity for each class.

The bryophyte-lichen syntaxa of the Netherlands

We selected more than 5000 relevés from the Netherlands, based on Braun-Blanquet syntaxonomy and the majority recorded in the period 2000–2017, to compile our syntaxonomic lists. Our main goal was to produce a scientifically based overview of bryophyte-lichen vegetation useful for both scientists and nature managers in the field (as illustrated by Haveman and De Ronde (2021): “the proof of the classification is in its usage”). For this reason, we simplified syntaxon names whenever appropriate. As an example, we renamed the T. pellucidae Von Krusenstjerna 1945 to the simpler form Tetraphidion Von Krusenstjerna 1945 as only one Tetraphis species Tetraphis pellucida is known in Europe, leaving no room for confusion. Therefore, the epithet ‘pellucidae’ is not neccessary in the name of the alliance to interpret the syntaxon correctly. On the other hand, we used the name Rhizocarpetalia geographici Klement 1949 instead of the proposed valid name Rhizocarpetalia Klement 1949 (with the addition nom. conserv. propos. in Mucina et al. 2016), to prevent confusion with the Rhizocarpetalia reducti Wirth 1980 (Rhizocarpetalia obscurati Wirth 1980 in Mucina et al. 2016).

Many bryophyte and lichen species share the same habitat and substrate and are subject to the same (a)biotic conditions. Therefore, whenever possible, we integrated bryophyte and lichen syntaxonomy. As a result, our choice of syntaxa and syntaxon names fits the Dutch situation well but is not always in accordance with the International Code of Phytosociological Nomenclature (ICPN) (Weber et al. 2000). To illustrate this, we combined the ‘bryophyte class’ Frullanio dilatatae-Leucodontetea sciuroidis Mohan 1978 and the ‘lichen class’ Physcietea Tomaselli and De Micheli 1952 into one integrated class divided into the bryophyte-dominated order Orthotrichetalia Hadač in Klika and Hadač 1944 (originating from the Frullanio-Leucodontetea) and the lichen-dominated order Physcietalia Hadač in Klika and Hadač 1944 (originating from the Physcietea). According to the ICPN, the new name should be: Physcietea Tomaselli and De Micheli 1952. As in our integrated class both bryophyte and lichen species play a more or less equally important role, we combined both the original class names into the new name Orthotricho-Physcietea Tomaselli and De Micheli 1952 (Fig. 1), although not valid according to the ICPN. Why we chose to follow the ICPN in specific cases, and why we chose to divert from it in many other cases, is extensively explained in Schrijvers-Gonlag (2019). We aimed at easy-to-use names for our syntaxa. Haveman (2016) quotes the famous Shakespeare sentence ‘What’s in a name? that which we call a rose By any other name would smell as sweet’ (Shakespeare 1597) to illustrate that plant names are just code words to facilitate communication among humans. The same is valid for syntaxa: names are just names, as stated in the ICPN: “Names are only labels and, as such, they can never be wholly adequate. [...] It is far more important to know exactly what is meant by a name than to find one that seems in every respect to be characteristic” (Weber et al. 2000).

Figure 1.

A Physcietalia vegetation with a large cover of Orthotrichetalia moss species, or an Orthotrichetalia vegetation invaded by Physcietalia lichen species? We prefer an integrated approach with both bryophytes and lichens included: several moss species (Lewinskya speciosa, Nyholmiella obtusifolia (both species formerly in the genus Orthotrichum, hence the name Orthotrichetalia; Goffinet et al. 2004, Sawicki et al. 2010, Lara et al. 2016), Pylaisia polyantha) and many lichen species (Athallia pyracea, Caloplaca cerina, Candelariella xanthostigma, Myriolecis dispersa, Phaeophyscia orbicularis, Physcia adscendens, P. aipolia, P. stellaris, Toniniopsis subincompta, Xanthoria parietina) were identified in an Orthotricho-Physcietea vegetation on a Populus tremula trunk (Koppang, Norway 2020). Photo: Marcel Schrijvers-Gonlag. The length of the scale bar (white piece of paper) is 10.0 cm.

img-z3-3_01.jpg

The list with Dutch bryophyte-lichen syntaxa (Table 1) consists of 11 former classes (Mucina et al. 2016) existing of mainly bryophyte or lichen species, supplemented with five classes where existing bryophyte and lichen classes have been integrated, often merged at order level: Hymenelio lacustris-Fontinalietea antipyreticae, Verrucario nigrescentis-Schistidietea crassipili, Racomitrio heterostichi-Rhizocarpetea geographici, Orthotricho-Physcietea and Ceratodonto purpurei-Polytrichetea piliferi. The overview includes 168 syntaxa: 16 classes, 27 orders, 37 alliances, 82 associations and 6 subassociations (Table 1). From these, 13 are new syntaxa and described in detail (with the addition ‘nov. hoc loco’ in Van Dort et al. (2017): two alliances, nine associations and two subassociations (further down: New syntaxa). As 46 tracheophyte-dominated classes have been described in the Netherlands recently (Introduction), the 16 bryophyte-lichen-dominated classes in Table 1 are numbered 47–62.

Dutch bryophyte-lichen syntaxa in an international context

Our classification is based on recent national data and European classifications. For each syntaxon, the set of diagnostic species reflects the conditions of the Netherlands, but the allocation may also fit other European lowland regions with temperate climatic influences. Here, we make some comparisons with syntaxa elsewhere in Europe.

Our classification of epiphytic syntaxa broadly follows Barkman's study of cryptogamic epiphytes in Europe (Barkman 1958). Barkman limited himself to the level of order but he discussed two possible ways of grouping his nine epiphytic orders into four classes. However, he refrained from drawing up ‘premature’ classes, leaving the final decisions about ecological criteria and the selection of faithful species to future phytosociologists (Barkman 1958). Much research has been done in recent years. Although our knowledge of floristic affinities between syntaxa is still far from being complete, it seems appropriate to publish an updated overview based on contemporary data. However, it should be kept in mind, that a comprehensive, stable phytosociological system is largely a matter of wishful thinking. In modern times, environmental factors (below) and changes in land use lead to rapid changes in the floristic composition of assocations, so adaptations, or additions, of the syntaxonomic units will always be necessary (Bout and Dirkx 2012, Schaminée et al. 2017, Haveman 2021, Haveman and De Ronde 2021).

Table 1.

Bryophyte-lichen syntaxa in the Netherlands. Red List status for vegetations representing syntaxa at association or subassociation level is given (Van Dort et al. 2017, Schrijvers-Gonlag et al. 2018). Classes (in bold) are numbered 47–62, succeeding 46 classes which have been described previously (text). When a syntaxon name does not correspond with the International Code of Phytosociological Nomenclature (Weber et al. 2000) its ‘valid name’ (the name according to Weber et al. 2000; Mucina et al. 2016) is given between parentheses []. If a syntaxon name is valid, but Mucina et al. (2016) propose a different name, this is also indicated between parentheses, with the addition ‘nom. conserv. propos. (Mucina et al. 2016)’. C: character species, D: differential species. Red List status of corresponding vegetations (RL): LC = Least Concern, NT = Near Threatened, VU =Vulnerable, EN = Endangered, CR = Critically Endangered, EX = Extinct (categories according to The IUCN Red List, iucnredlist.org).

img-z4-2_01.gif

Continued

img-z5-1_01.gif

Continued

img-z6-1_01.gif

Continued

img-z7-1_01.gif

Continued

img-z8-1_01.gif

Until recently, climatic conditions prevented the occurrence of xero-thermophilous species as Fabronia pusilla in the Netherlands (BLWG 2023a). The Fabronion pusillae Barkman 1958 is therefore not mentioned on the Dutch list (Table 1). Mucina et al. (2016) consider the F. pusillae synonymous with the Syntrichion laevipilae, widespread and common in the Netherlands – although F. pusilla is not indiginous (yet?) (BLWG 2023a). Fabronia pusilla may spread from populations on the stems of garden trees, imported from the Mediterranean countries, and become part of Syntrichion vegetations in the Netherlands in the near future.

Due to sulphur dioxide and ammonia emissions and depositions in the last century (Asman et al. 1988, Mylona 1996, De Ruiter et al. 2006, De Haan et al. 2008, Van der Swaluw et al. 2011, Van Zanten et al. 2017, Dammers et al. 2022, Wever et al. 2022), acidophilous cryptogams have decreased in distribution while epiphytes favoured by eutrophication have spread rapidly. Nitrophytes invaded vegetations to such an extend that formerly obvious floristical characteristics have been obscured. In particular vegetations representing Hypogymnietea physodis associations have impoverished and decreased in area (Van Herk and Spier 1994, Van Herk et al. 2000, Sparrius and Timmerman 2014). Within the Hypogymnietea, both alliances Usneion barbatae Ochsner 1928 and Vulpicidion pinastri Ochsner ex Kušan 1933 (synonym Cetrarion pinastri), two in many European boreal and mountain areas well represented alliances, are missing from the Dutch list with bryophyte-lichen syntaxa (Table 1). Some of the diagnostic species are known from lowland countries, but exist here on the edge of their natural distribution area due to climatic conditions. The epiphytic lichens Bryoria fuscescens, Platismatia glauca, Tuckermanopsis chlorophylla, Usnea filipendula, U. subfloridana (all diagnostic for the U. barbatae), Parmeliopsis ambigua and Vulpicida pinastri (diagnostic for the V. pinastri) have declined tremendously in the last century, mainly due to the mentioned sulphur dioxide and ammonia emissions and depositions in the Netherlands (Aptroot et al. 2011, Van der Pluijm and Boesveld 2016, BLWG 2023b). All present vegetations in the Netherlands with one of these species are ‘floristically blurred’ and can hardly be distinguished syntaxonomically from the Hypogymnion physodis. We use a broad concept of the H. physodis and the impoverished Usneetum filipendulae and Parmeliopsidetum ambiguae vegetations are placed within the H. physodis (Table 1), while in our neighboring country Germany these associations still are included in the U. barbatae and V. pinastri (Drehwald 1993, Wirth 1995, Schubert and Stordeur 2011).

The forest species Lobaria pulmonaria and Lobarina scrobiculata, character species of the L. pulmonariae Ochsner 1928, disappeared long ago from the highly fragmented forests in the Netherlands (BLWG 2023c), and most European lowland forests. Therefore, the Lobarion appears under ‘Disappeared climax vegetation’ in the class Neckeretea complanatae in Van Dort et al. (2017). Another example of an epiphytic syntaxon absent in Table 1 is the Nowellion curvifoliae Philippi 1965 (Cladonio digitatae-Lepidozietea reptantis) (Barkman proposed the name Blepharostomion trichophylli for this alliance). Representatives of the N. curvifoliae are common in many conifer dominated forests in Europe. Due to adjusted forest management (Wijdeven 2005, Schelhaas et al. 2022), the diagnostic species Nowellia curvifolia, Riccardia latifrons and more recently also R. palmata are increasing in the Netherlands (BLWG 2023d), responding to an increased availability of large diameter logs at late decay stages (important for critical epiphytes; Ódor and Van Hees 2004, Ódor et al. 2006). Nevertheless, their current distribution does not yet justify the existence of an independent alliance in the Netherlands.

Epilithic bryophyte-lichen vegetation is widespread in the densely populated Netherlands. However, exposed acidic rock surface is nearly absent. Acidophytic epilitics are restricted to just a few imported graveyard stones, sea dikes constructed with granitic boulders from the ‘hunebedden’ (ancient tombs similar to dolmens;  www.sketchfab.com/gia), few remaining hunebedden and some weathered walls from old churches and historical buildings. As a consequence, the number of syntaxa belonging to the Racomitrio heterostichi-Rhizocarpetea geographici is very small in the Netherlands (Table 1). Moreover, Racomitrio-Rhizocarpetea associations are poor in character species compared to corresponding associations in other European countries, especially in mountainous regions. Several reasons exist: the relatively small area available, the young age (no late succession stages present: graveyard stones, hunebedden and stone sea dikes were absent before 1700, or not exposed: hunnebedden were buried in the ground), eutrophication (particularly with nitrogen-containing compounds as mentioned earlier), and increasing shade and restauration measures of graveyard stones, hunebedden and granite sea dikes (Masselink and Van Zanten 1976, Boele and Van Zanten 1984, Siebel et al. 2000, Colpa and Van Zanten 2006, Bijlsma et al. 2009). On the other hand, epilithic vegetations with calcicolous species (Verrucario nigrescentis–Schistidietea crassipili, N. complanatae) are abundant in the Netherlands on anthropogenic substrate as buildings, extensively used roads and pavements. The species composition does not differ substantially from vegetation on natural calcareous and other base-rich siliceous rock surfaces. As species preferring chalk, limestone or other base-rich porouse rock surface are rare or absent in the Netherlands, so are the corresponding vegetations belonging to the Verrucario nigrescentis–Schistidietea crassipili, the Ctenidietea mollusci Von Hübschmann ex Grgić 1980 and the Clauzadeetea immersae Roux in Roux et al. 2009. The latter two classes are absent in Table 1, in spite of the fact that some impoverished communities or fragments do occur. For example, a characteristic Ctenidietea species like Ctenidium molluscum is rather widespread in the Netherlands (be it on antropogeneous substrata), and not rare in the southeastern part of the country (Mergelland) on nutrient-poor limestone substrates (BLWG 2023e).

In the Netherlands, both small and large freshwater bodies are common. Most of these are both mineral-rich and base-rich and therefore aquatic (amphibious and (semi-) permanently submerged) communities belonging to the Hymenelio lacustris–Fontinalietea antipyreticae are widespread. A rare cryptogam vegetation on pebbles and stones in clear, mineral-poor streams resembles the habitat of the montane association Verrucarietum siliceae Wirth and Ullrich in Wirth 1972 as described in Drehwald (1993). The species composition shows more affinities to the Verrucarietum rheitrophilae Coste 2011, belonging to the alliance Verrucarion rheitrophilae Coste 2011. We updated and modernized the syntaxon names to Hydropunctarietum rheitrophilae and Hydropunctarion rheitrophilae, respectively (Table 1). In the Netherlands, vegetations representing the alliances H. rheitrophilae and Racomitrion acicularis (common in montane and subalpine areas) have the Red List-status ‘endangered’ (Table 1). Our classification of these syntaxa is based on a limited number of relevés poor in diagnostic species and our description is probably incomplete. For example, only one character species (Scapania undulata) is distinguished in the Chiloscypho rivularis-Scapanietum undulatae, whereas in German literature Dichodontium pellucidum figures either as a second character species for this association (Marstaller 2006), or is present in the Chiloscypho-Scapanietum (Schubert 2008) or R. acicularis (Von Hübschmann 1986, Dierßen 2001). Interestingly, in a German province with relatively low elevation and bordering the Netherlands, D. pellucidum is characteristic for the Brachythecietalia plumosi (Drehwald and Preising 1991). Frey et al. (2006) describe D. pellucidum as a mountainous species, sparse in the lowlands. In the Netherlands, D. pellucidum is very rare and mainly growing in Leptodictyo-Fissidentetum crassipedis vegetation.

The bryophyte-lichen communities affected by saltwater (Hydropunctarietea maurae) are also common in the Netherlands. Bryophytes are almost absent in these coastal communities. Noteworthy is that, unlike many other places in Europe, natural rock formations are lacking along the sandy North Sea coast line. Salt-tolerating lichens are almost exclusively restructed to dikes (often made of basalt, chalk stone or granite), and other antropogenic constructions as wooden poles. Sporadically, H. maurae communities are found on shells and other hard substrate from animals in the littoral zone (e.g. Littorina spp., Ostrea spp., Sessilia spp.) and on weathered bones or plant material (see the synoptic table of the Lecanoretum zosterae below).

Our interpretation of the Psoretea decipientis, pioneer epigaeic bryophyte-lichen vegetations on exposed, nutrient-rich, subneutral to calcareous soil differs from many other European classifications. The syntaxonomic interpretation of these vegetations is greatly influenced by the scale used (both temporal and sparial) and such vegetations are sometimes considered synusiae, microcoeni, microcommunities, or other dependent communities and not independent syntaxa. For a discussion about the classification of ephemeral small-scale bryophyte-lichen vegetations see Van Dort et al. (2017). Here we only mention some differences with other European classifications. Two orders are recognized in the P. decipientis: the Barbuletalia and Funarietalia hygrometricae (we don't distinguish a separate Psoretalia decipientis Mattick 1951; Table 1). In the F. hygrometricae, Von Hübschmann (1986), Drehwald and Preising (1991) and Marstaller (2006) distinguished a Physcomitrellion patentis Von Hübschmann 1957, whereas Bültmann placed this alliance in the Dicranelletalia heteromallae (Mucina et al. 2016). In the Netherlands, the P. patentis diagnostic species Physcomitrium eurystomum, P. sphaericum and Physcomitrella patens represent the Eleocharito acicularis-Limoselletum Wendelberger-Zelinka 1952 (Bidentetea tripartitae Tüxen et al. in Tüxen 1950) (Weeda et al. 1998, Nieuwkoop 2011, 2016), whereas Physcomitrium pyriforme is diagnostic of the Funarion hygrometricae. A peculiar feature of the Netherlands is the overall-presence of nutrient-enriched habitats (mainly resulting from a high ammonia deposition, see before). Therefore, the P. patentis elements are largely replaced by nitrophilous species diagnostic of the F. hygrometricae and consequently the P. patentis is absent in Table 1.

We do not accept many of the associations placed within the P. decipientis, particularly Barbuletalia, by other authors (Schlüsslmayr 2005, Marstaller 2006, Schubert 2009). Some character species of these associations occur or may be present occasionally in the Netherlands, but they appear periodically while forming a diffuse bryophyte layer in vegetation types dominated by vascular plants (e.g. the Riccio-Anthocerotetum punctati Koppe ex Neumayr 1971 vegetation in the Netherlands is appointed to the Centunculo- Anthocerotetum punctati Koch ex Libbert 1932 in the N. flavescentis Koch ex Libbert 1932 (Isoeto-Nanojuncetea Braun-Blanquet et Tüxen 1943) (Lemaire et al. 1998, Siebel and Van Dort 1999)). A second reason to ignore these Psoretea-syntaxa is that many of the vegetations, representing associations recognized in other countries, originate from pioneer habitats, e.g. river banks. In the Netherlands, fluviatile vegetation develops within an extremely short period. Bryophytes do sometimes build up quite large populations, always in combination with vascular plants. As both groups are fairly inseparable, both spatially and temporarily, they do not meet the definition of an independent bryophyte community (Siebel and Van Dort 1999). These vegetations therefore have to be considered as synusiae, or pioneer phases of the already mentioned Eleocharito acicularis-Limoselletum.

Two associations figure in the Splachnetea in Table 1. The coprophilous bryophytes in this class (all in the moss family Splachnaceae) occur widely on dung, carcasses, antlers and bird's pellets (Frey et al. 2006, Hallingbäck et al. 2008, Blockeel et al. 2014). In boreal, arctic and alpine habitat, these substrates decay slowly. In the Netherlands, the decomposition rate is generally too high to allow Splachnaceae to complete their life cycle (Cameron and Wyatt 1986, Bijlsma 2010). Suitable habitat, e.g. wet heathland, edges of fens and moorland and ombotrophic peat areas, have become extremely rare. Moreover, large herbivores which provide suitable dung are often absent. The two Splachnetea species known from the Netherlands most likely became extinct (Splachnum ampullaceum, last record in 2010; Tetraplodon mnioides, last record in 2002; BLWG 2023f). As Splachnaceae almost have disappeared from the surrounding countries, colonization from foreign populations is unlikely, but not impossible (Walsh 1951, Blockeel et al. 2014, Van Landuyt et al. 2020, BLWG 2023f, NBN 2023, PMD 2023).

New syntaxa

All 13 new syntaxa that are described in detail (with the addition ‘nov. hoc loco’) in Van Dort et al. (2017) are listed below, including a synoptic table (species cover according to an adjusted Braun-Blanquet cover-abundance scale; Van Dort et al. (2017)). Also the type relevé (‘holotypus hoc loco’ in Van Dort et al. (2017), Weber et al. (2000)) and a reference to the original publication are given.

Cinclidotetum fontinaloidis Von Hübschmann 1953 cinclidotetosum danubici Siebel 2017

  • Full name: Cinclidotetum fontinaloidis Gams 1927 ex Von Hübschmann 1953 cinclidotetosum danubici Siebel 2017 in Van Dort et al. 2017

  • First published on p. 43 in: Van Dort, K. W., Haveman, R., Schrijvers-Gonlag, M., Weeda, E. J. and Van Gennip, B. 2017. Hymenelio lacustris-Fontinalietea antipyreticae. Klasse van (spat)watergemeenschappen. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 23–50.

  • Type relevé subassociation: Cinclidotetum fontinaloidis cinclidotetosum danubici Siebel 2017, holotypus: relevé nr 5 in the synoptic table below. Location: Winssen (the Netherlands), on a river groyne. Size: 1 m by 0.5 m (area 0.5 m2). Recorded by H. N. Siebel on 5 August 1995.

  • Type relevé association: Cinclidotetum fontinaloidis Gams ex Von Hübschmann 1953, lectotypus: Von Hübschmann (1953), Table 4 (p. 22), relevé nr 6.

  • Synoptic table Cinclidotetum fontinaloidis cinclidotetosum danubici (Table 47-9 in Van Dort et al. 2017).

    img-AHsJ_01.gif

    Cinclidotetum fontinaloidis Von Hübschmann 1953 leskeetosum polycarpae Van Gennip 2017

  • Full name: Cinclidotetum fontinaloidis Gams 1927 ex Von Hübschmann 1953 leskeetosum polycarpae Van Gennip 2017 in Van Dort et al. 2017

  • First published on pp. 43–45 in: Van Dort, K. W., Haveman, R., Schrijvers-Gonlag, M., Weeda, E. J. and Van Gennip, B. 2017. Hymenelio lacustris-Fontinalietea antipyreticae. Klasse van (spat)watergemeenschappen. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 23–50.

  • Type relevé subassociation: Cinclidotetum fontinaloidis leskeetosum polycarpae Van Gennip 2017, holotypus: relevé nr 9 in the synoptic table below. Location: Havikerwaard, De Steeg (the Netherlands), on a river groyne. Size: 1 m by 3 m (area 3 m2). Recorded by B. van Gennip on 28 February 2008.

  • Type relevé association: Cinclidotetum fontinaloidis Gams ex Von Hübschmann 1953, lectotypus: Von Hübschmann (1953), Table 4 (p. 22), relevé nr 6.

  • Synoptic table Cinclidotetum fontinaloidis leskeetosum polycarpae (Table 47-10 in Van Dort et al. 2017).

    img-A7qB_01.gif

    Continued

    img-z12-1_01.gif

    Lecanoretum zosterae Van Dort 2017

  • Full name: Lecanoretum zosterae Van Dort 2017 in Van Dort et al. 2017

  • First published on pp. 64–66 in: Van Dort, K. W., Van Gennip, B. and Aptroot, A. 2017. Hydropunctarietea maurae. Zeestippelkorst-klasse. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 51–66.

  • Type relevé: Lecanoretum zosterae Van Dort 2017, holotypus: relevé nr 0 in the synoptic table below. Location: Wissenkerke (the Netherlands), on an old wooden sea barrier pole. Size: 1.5 m by 0.3 m (area 0.45 m2). Recorded by K. W. van Dort on 13 August 2014.

  • Synoptic table Lecanoretum zosterae (Table 48-8 in Van Dort et al. 2017).

    img-AdEZ_01.gif

    Continued

    img-z13-1_01.gif

    Lecanorion pannonicae Van Gennip 2017

  • Full name: Lecanorion pannonicae Van Gennip 2017 in Van Dort et al. 2017

  • First published on p. 87 in: Van Dort, K. W., Aptroot, A. and Van Gennip, B. 2017. Verrucario nigrescentis-Schistidietea crassipili. Klasse van Stippelkorsten en Achterlichtmossen. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 67–92.

  • Type relevé: Lecanoretum pannonicae Van Gennip 2017, holotypus: relevé nr 0 in the synoptic table of the L. pannonicae further down. Location: Drempt (the Netherlands), on a tuff church wall. Size: 1 m by 1 m (area 1 m2). Recorded by B. van Gennip on 1 February 2007.

  • Synoptic table Lecanoretum pannonicae (Table 49-9 in Van Dort et al. 2017).

    img-A-UN_01.gif

    Continued

    img-z14-1_01.gif

    Continued

    img-z15-1_01.gif

    Lecanoretum pannonicae Van Gennip 2017

  • Full name: Lecanoretum pannonicae Van Gennip 2017 in Van Dort et al. 2017

  • First published on pp. 87–90 in: Van Dort, K. W., Aptroot, A. and Van Gennip, B. 2017. Verrucario nigrescentis-Schistidietea crassipili. Klasse van Stippelkorsten en Achterlichtmossen. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 67–92.

  • Type relevé: Lecanoretum pannonicae Van Gennip 2017, holotypus: relevé nr 0 in the synoptic table below. Location: Drempt (the Netherlands), on a tuff church wall. Size: 1 m by 1 m (area 1 m2). Recorded by B. van Gennip on 1 February 2007.

  • Porpidietum soredizodis Van Gennip 2017

  • Full name: Porpidietum soredizodis Van Gennip 2017 in Van Dort et al. 2017

  • First published on pp. 112–114 in: Van Dort, K. W., Aptroot, A. and Van Gennip, B. 2017. Racomitrio heterostichi-Rhizocarpetea geographici. Klasse van Bisschopsmutsen en Landkaartmossen. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 93–116.

  • Type relevé: Porpidietum soredizodis Van Gennip 2017, holotypus: relevé nr 0 in the synoptic table below. Location: Scheveningen (the Netherlands), on a brick wall. Size: 2 m by 0.35 m (area 0.7 m2). Recorded by B. van Gennip on 8 July 2016.

  • Synoptic table Porpidietum soredizodis (Table 50-8 in Van Dort et al. 2017).

    img-AZnM8_01.gif

    Continued

    img-z16-1_01.gif

    Protoparmelietum oleaginae Van Dort and Van Herk 2017

  • Full name: Protoparmelietum oleaginae Van Dort and Van Herk 2017

  • First published on pp. 148–151 in: Van Dort, K. W. and Van Herk, C. M. 2017. H. physodis. Schorsmos-klasse. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 127–160.

  • Type relevé: Protoparmelietum oleaginae Van Dort and Van Herk 2017, holotypus: relevé nr 2 in the synoptic table below. Location: Wezup (the Netherlands), on a roadside Quercus robur trunk. Size: 1.5 m by 0.4 m (area 0.6 m2). Recorded by K. W. van Dort and C. M. van Herk on 16 May 2013.

  • Synoptic table Protoparmelietum oleaginae (Table 52-7 in Van Dort et al. 2017).

    img-ALUr_01.gif

    Continued

    img-z17-1_01.gif

    Ramalinion farinaceae Van Dort and Van Herk 2017

  • Full name: Ramalinion farinaceae Van Dort and Van Herk 2017 in Van Dort et al. 2017

  • First published on p. 181 in: Van Dort, K. W., Schrijvers-Gonlag, M. and Van Herk, C. M. 2017. Orthotricho-Physcietea. Klasse van Haarmutsen en Vingermossen. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 161–200.

  • Type relevé: Ramalinetum fastigiatae Duvigneaud 1942, holotypus: relevé nr 10 in the synoptic table below. Location: Gasteren (the Netherlands), on a roadside Quercus robur trunk. Size: 2 m by 0.5 m (area 1 m2). Recorded by K. W. van Dort on 25 November 2016.

  • Synoptic table Ramalinetum fastigiatae (Table 53-7 in Van Dort et al. 2017).

    img-A-L_01.gif

    Continued

    img-z19-1_01.gif

    Pertusarietum coccodis Van Dort and Van Herk 2017

  • Full name: Pertusarietum coccodis Van Dort and Van Herk 2017 in Van Dort et al. 2017

  • First published on pp. 181–184 in: Van Dort, K. W., Schrijvers-Gonlag, M. and Van Herk, C. M. 2017. Orthotricho-Physcietea. Klasse van Haarmutsen en Vingermossen. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 161–200.

  • Type relevé: Pertusarietum coccodis Van Dort and Van Herk 2017, holotypus: relevé nr 10 in the synoptic table below. Location: Havelte (the Netherlands), on a roadside Quercus robur trunk. Size: 1.5 m by 0.3 m (area 0.45 m2). Recorded by C. M. van Herk, K. W. van Dort and B. van Gennip on 23 March 2015.

  • Synoptic table Pertusarietum coccodis (Table 53-5 in Van Dort et al. 2017).

    img-AlqOf_01.gif

    Continued

    img-z20-1_01.gif

    Fissidentetum gymnandri Van Dort and Weeda 2017

  • Full name: Fissidentetum gymnandri Van Dort and Weeda 2017

  • First published on pp. 262–263 in: Van Dort, K. W. and Weeda, E. J. 2017. Neckeretea complanatae. Kringmos-klasse. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 251–272.

  • Type relevé: Fissidentetum gymnandri Van Dort and Weeda 2017, holotypus: relevé nr 0 in the synoptic table below. Location: Sliedrechtse Biesbosch (the Netherlands), on a silted Salix alba trunk. Size: 1 m by 0.5 m (area 0. 5 m2). Recorded by K. W. van Dort on 4 February 2004.

  • Synoptic table Fissidentetum gymnandri (Table 56-4 in Van Dort et al. 2017).

    img-ArjW_01.gif

    Continued

    img-z21-1_01.gif

    Sciurohypno populei-Anomodontetum viticulosi Van Dort and Weeda 2017

  • Full name: Sciurohypno populei-Anomodontetum viticulosi Van Dort and Weeda 2017

  • First published on pp. 266–270 in: Van Dort, K. W. and Weeda, E. J. 2017. Neckeretea complanatae. Kringmos-klasse. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 251–272.

  • Type relevé: Sciurohypno populei-Anomodontetum viticulosi Van Dort and Weeda 2017, holotypus: relevé nr 0 in the synoptic table below. Location: estate Hindersteyn (the Netherlands), on a coppiced Fraxinus excelsior stump (stool). Size: 2 m by 1 m (area 2 m2). Recorded by K. W. van Dort on 15 November 2015.

  • Synoptic table Sciurohypno populei-Anomodontetum viticulosi (Table 56-6 in Van Dort et al. 2017).

    img-z21-11_01.gif

    Continued

    img-z22-1_01.gif

    Cladonietum digitatae Van Dort 2017

  • Full name: Cladonietum digitatae Van Dort 2017 in Van Dort et al. 2017

  • First published on pp. 296–298 in: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. 2017. Cladonio digitatae-Lepidozietea reptantis. Klasse van Vertakt bekermos en Neptunusmos. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 273–312.

  • Type relevé: Cladonietum digitatae Van Dort 2017, holotypus: relevé nr 4 in the synoptic table below. Location: Wolfheze-Laag (the Netherlands), on a collapsed very old Quercus robur trunk. Size: 2 m by 0.35 m (area 0.7 m2). Recorded by K. W. van Dort on 2 January 2012.

  • Synoptic table Cladonietum digitatae (Table 57-6 in Van Dort et al. 2017).

    img-z23-7_01.gif

    Continued

    img-z24-1_01.gif

    Trapeliopsidetum flexuosae Van Dort 2017

  • Full name: Trapeliopsidetum flexuosae Van Dort 2017 in Van Dort et al. 2017

  • First published on pp. 303–304 in: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. 2017. Cladonio digitatae-Lepidozietea reptantis. Klasse van Vertakt bekermos en Neptunusmos. – In: Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds), De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. KNNV Uitgeverij, pp. 273–312.

  • Type relevé: Trapeliopsidetum flexuosae Van Dort 2017, holotypus: relevé nr 5 in the synoptic table below. Location: Planken Wambuis, Ede (the Netherlands), on a collapsed Pinus sylvestris trunk (log). Size: 8 m by 0.3 m (area 2.4 m2). Recorded by K. W. van Dort on 5 March 2013.

  • Synoptic table Trapeliopsidetum flexuosae (Table 57-9 in Van Dort et al. 2017).

    img-z24-10_01.gif

    Continued

    img-z25-1_01.gif

    Table 2.

    Weighing of species to calculate mean habitat indicator values on association level. For each association, all species present in the association (and corresponding subassociations) in the synoptic table of the actual class (Van Dort et al. 2017) are considered. The weight per species is given, used to calculate, per association, a mean habitat indicator value (moisture, light availabilty, nutrient richness, acidity; Siebel 1993, 2005, Sparrius et al. 2015a, b). Species not identified on species level (e.g. Collema sp.) are excluded. If several subspecies or variants of one species are present, indicator values are averaged and used only once in the calculations. Additionally, character and differential species not present in the synoptic table, but present in the association table or mentioned as such in the accompanying text (in Van Dort et al. 2017), are also included with similar weights as in the table below. ‘Species presence’ under ‘Note’ is the species presence (%) in the actual association in the corresponding synoptic table. *Aptroot et al. (2011), Siebel et al. (2013).

    img-z25-4_01.gif

    Figure 2.

    Relationships between classes for the habitat variables moisture, light availabilty, nutrient richness and acidity. For each class, the minimum and maximum ecological indicator values of their associations are indicated by a solid green box. Values for other classes are indicated by transparent green boxes. Moisture: 1 = very dry, 11 = in water; light availability (‘Light’): 2 = shadow-deep shadow, 9 = very open; nutrient richness (‘Nutrients’): 1 = very poor, 9 = excessively rich; acidity (‘pH’): 1 = extremely acid, 9 = extremely basic. Class names truncated if necessary.

    img-z26-1_01.jpg

    Ecological relationships between classes

    In Van Dort et al. (2017) we analysed almost all associations on the abiotic habitat variables moisture, light availabilty, nutrient richness and acidity to compare habitat preferences of all associations within a class, using ‘ecological indicator values’ specifically designed for Dutch bryophyte and lichen species (Siebel 1993, 2005, Sparrius et al. 2015a, b). The class Fellhaneretea bouteillei with epiphyllic lichen species contains only three diagnostic species. One is a character species on class level F. bouteillei which also grows in completely different habitats than typical for this class. Also, its diagnostic value for one of the two associations is not fully clear (yet). Furthermore, this class contains two very rare character species on association level (Fellhaneropsis vezdae and Fellhaneropsis rhododendri; BLWG 2023g). Therefore we decided to exclude this class (two associations) from our analyses. For all other 80 associations in the remaining 15 classes, species indicator values were used to calculate an average value per association. In this calculation, species were weighted: character species were more important than differential species and diagnostic species on association level were more important than diagnostic species on other levels (Table 2). Here, we use this analysis to indicate, for these four habitat variables, the position of each class (except the F. bouteillei) relative to the other classes, using minimum and maximum values of all associations from each class (Fig. 2). Analyses performed in R ver. 4.2.2 ( www.r-project.org). Figures in Fig. 2 made with R-package ‘ggplot2’ ( www.r-project.org, Wickham 2016).

    Acknowledgements

    We thank Bas van Gennip, our co-editor and co-author (Van Dort et al. 2017), for his immense contribution to the classification. We thank Daniela Gigante for indispensable advice and Helga Bültmann and our co-authors (Van Dort et al. 2017) for invaluable discussions and contributions: André Aptroot, Rense Haveman, Kok (C. M.) van Herk, Iris de Ronde, Henk N. Siebel, Laurens B. Sparrius, Leo (J. L.) Spier, and particularly Eddy J. Weeda whose comments greatly improved the manuscript. We thank Heinjo During for some important final textual improvements. MSG thanks the Stack Exchange Q&A web communities Stack Overflow and Cross Validated for invaluable statistical and analytical insights, and Christina Skarpe, Harry P. Andreassen (deceased 21 May 2019) and especially Marieke Gonlag-Schrijvers for their patience and understanding.

    © 2023 The Authors. This is an Open Access article

    Data availability statement

    The dataset used in this study is stored in the DataverseNO database and available at  https://doi.org/10.18710/L4IDNP (Schrijvers-Gonlag and Van Dort 2023).

    References

    1.

    Aptroot, A., Van Herk, C. M. and Sparrius, L. B. 2011. Basisrapport voor de Rode Lijst Korstmossen. – BLWG Rapport 12. Bryologische en Lichenologische Werkgroep, Oude-Tonge. – Buxbaumiella 92: 1–117. Google Scholar

    2.

    Asman, W. A. H., Drukker, B. and Janssen, A. J. 1988. Modelled historical concentrations and depositions of ammonia and ammonium in Europe. – Atmos Environ. 22: 725–735. Google Scholar

    3.

    Bardat, J. and Hauguel, J.-C. 2002. Synopsis bryosociologique pour la France. – Cryptogam Bryol. 23: 279–343. Google Scholar

    4.

    Barkman, J. J. 1958. Phytosociology and ecology of cryptogamic epiphytes, including a taxonomic survey and description of their vegetation units in Europe. – Van Gorcum. Google Scholar

    5.

    Barkman, J. J. 1969. De epifytenvegetatie van het Speulder en Sprielderbosch, de gezelschappen, hun milieu en successie. Vergelijking met andere bossen. – Med. Biol St. Wijster (Dr.) 146: 186–197. Google Scholar

    6.

    Barkman, J. J. 1989. The Dicranello cerviculatae-Campylopodetum pyriformis in the Netherlands and NW Germany. – Lindbergia 15: 37–46. Google Scholar

    7.

    Beijerinck, W. 1934. Sphagnum en Sphagnetum. – Meded. Ned. Biol. 6: 116. Google Scholar

    8.

    Bijlsma, R. J. 2010. De vreugdevolle terugkeer van een strontmos. – De Levende Natuur 111: 222–223. Google Scholar

    9.

    Bijlsma, R. J., Aptroot, A., Van Dort, K. W. et al. 2009. Preadvies mossen en korstmossen. – Directie Kennis, Ministerie LNV. Rapport DK nr. 2009/dk104-O. Google Scholar

    10.

    Blockeel, T. L., Bosanquet, S. D. S., Hill, M. O. et al. 2014. Atlas of British & Irish bryophytes, vol. 2. – Br. Bryol. Soc. Pisces Publications. Google Scholar

    11.

    BLWG 2017. Online bryophyte and lichen distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas.nl/mossen, verspreidingsatlas.nl/korstmossen. Google Scholar

    12.

    BLWG 2023a. Fabronia pusilla distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas. nl/3734. Google Scholar

    13.

    BLWG 2023b. Bryoria fuscescens, Parmeliopsis ambigua, Platismatia glauca, Tuckermanopsis chlorophylla, Usnea filipendula, U. subfloridana, Vulpicida pinastri distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas. nl/4075, verspreidingsatlas.nl/4450, verspreidingsatlas.nl/4507, verspreidingsatlas.nl/4132, verspreidingsatlas.nl/4626, verspreidingsatlas.nl/4632, verspreidingsatlas.nl/4135. Google Scholar

    14.

    BLWG 2023c. Lobaria pulmonaria, Lobarina scrobiculata distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas.nl/4376, verspreidingsatlas.nl/4377. Google Scholar

    15.

    BLWG 2023d. Nowellia curvifolia, Riccardia latifrons, R. palmata distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas.nl/3422, verspreidingsatlas. nl/3457, verspreidingsatlas.nl/3596. Google Scholar

    16.

    BLWG 2023e. Ctenidium molluscum distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas. nl/2660. Google Scholar

    17.

    BLWG 2023f. Splachnum ampullaceum, Tetraplodon mnioides distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas.nl/3031, verspreidingsatlas. nl/3037. Google Scholar

    18.

    BLWG 2023g. Fellhaneropsis vezdae, F. rhododendri distribution data. – In: NDFF Verspreidingsatlas mossen en korstmossen. verspreidingsatlas.nl/4066, verspreidingsatlas.nl/7386. Google Scholar

    19.

    Boele, C. and Van Zanten, B. O. 1984. De achteruitgang van de Nederlandse hunebeddenflora. – Lindbergia 10: 187–189. Google Scholar

    20.

    Boerboom, J. H. A. 1960. De plantengemeenschappen van de Wassenaarse duinen. – Dissertatie. Meded. Landbouwhogeschool Wageningen 60: 1–135. Google Scholar

    21.

    Bout, A. and Dirkx, G. H. P. 2012. Het gemaakte land. – In: Schaminée, J. H. J. and Janssen, J. A. M. (eds), Geboeid door het verleden. Beschouwingen over historische ecologie: . Vegetatiekundige Monografieën 4. KNNV Uitgeverij, pp. 117–137. Google Scholar

    22.

    Bruin, C. J. W., Weeda, E. J. and Kruijsen, B. W. J. M. 1999. Twee door mossen gekenmerkte plantengemeenschappen van noordhellingen in de duinen. – Stratiotes 19: 83–102. Google Scholar

    23.

    Cameron, R. G. and Wyatt, R. 1986. Substrate restriction in entomophilous Splachnaceae: role of spore dispersal. – Bryologist 89: 279–284. Google Scholar

    24.

    Coesel, P. F. M. 1963. De associatie van Didymodon recurvirostris en Tortella flavovirens. Een nader onderzoek naar dit in 1960 door J. H. A. Boerboom als nieuwe associatie beschreven cryptogamengezelschap. – Rapport Hugo de Vries Lab. R.I.V.O.N. Bilthoven. Google Scholar

    25.

    Colpa, J. G. and Van Zanten, B. O. 2006. Mossen op de Nederlandse hunebedden in 2004/2005. – Buxbaumiella 75: 34–50. Google Scholar

    26.

    Dammers, E., Shephard, M., Griffin, D. et al. 2022. County-level ammonia emissions monitored worldwide. – ResearchSquare. Google Scholar

    27.

    De Haan, B. J., Kros, J., Bobbink, R. et al. 2008. Ammoniak in Nederland. – PBL-publicatienummer 500125003. Planbureau voor de Leefomgeving. Google Scholar

    28.

    De Ruiter, J. F., Van Pul, W. A. J., Van Jaarsveld, J. A. et al. 2006. Zuur- en stikstofdepositie in Nederland in de periode 1981–2002. MNP-rapport 500037005/2006. – Milieu- en Natuurplanbureau. Google Scholar

    29.

    Delzenne-Van Haluwyn, C. 1976. Bibliographia phytosociologica syntaxonomica. Supplement I: Bibliographia societatum lichenorum. – Cramer. Google Scholar

    30.

    Demaret, F. 1939. Quelques associations bryophytiques du Calcaire Belge. – C.R. Congrès Ass. Franç. Avanc. Sc., pp. 934–936. Google Scholar

    31.

    Dierßen, K. 2001. Distribution, ecological amplitude and phytosociological characterization of European bryophytes. – Bryophytorum Bibliotheca Band 56. Google Scholar

    32.

    Dirkse, G. M. and Martakis, G. F. P. 1998. Species density of phanerogams and bryophytes in Dutch forests. – Biodivers Conserv. 7: 147–57. Google Scholar

    33.

    Drehwald, U. and Preising, E. 1991. Die Pflanzengesellschaften Niedersachsens; Moosgesellschaften. – Nat. Landsch. Niedersachsen 20: 204. Google Scholar

    34.

    Drehwald, U. 1993. Die Pflanzengesellschaften Niedersachsens; Flechtengesellschaften. – Nat. Landsch. Niedersachsen 20: 124. Google Scholar

    35.

    During, H. J. 1973. Het Nanocyperion flavescentis in de duinen, in atlantisch verband bezien. – Doctoraalscriptie Rijksuniversiteit. Google Scholar

    36.

    Frey, W., Frahm, J. P., Fischer, E. et al. 2006. The liverworts, mosses and ferns of Europe, English edn. – Harley Books. Revisedand edited by T. L. Blockeel. Original title: Kleine Kryptogamenflora, Bd. IV: Die Moos- und Farnpflanzen Europas. Gustav Fischer Verlag 1995. Google Scholar

    37.

    Goffinet, B., Shaw, A. J., Cox, C. J. et al. 2004. Phylogenetic inferences in the Orthotrichoideae (Orthotrichaceae: Bryophyta) based on variation in four loci from all genomes. – Syst. Bot. Monogr. Miss. Bot. Gard. 98: 270–289. Google Scholar

    38.

    Greven, H. C. 1990. De verspreiding van het Grimmietum orbicularis (Allorge 1922) Marstaller 1980 in Nederland. – Gorteria 16: 112–117. Google Scholar

    39.

    Hallingbäck, T., Lönnell, N., Weibull, H. et al. 2008. Nationalnyckeln till Sveriges flora och fauna. Bladmosser: Kompaktmossor-kapmossor. Bryophyta: Anoectangium-Orthodontium. – ArtDatabanken, SLU. Google Scholar

    40.

    Harmsen, G. 1999. Uit de geschiedenis van de bryosociologie en lichenosociologie. – Stratiotes 19: 6–27. Google Scholar

    41.

    Hassel, K., Kyrkjeeide, M. O., Yousefi, N. et al. 2018. Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid. – J Bryol. 40: 197–222. Google Scholar

    42.

    Haveman, R. 2016. Wat zegt een naam? Over naamgeving en identiteit. – In: Weeda, E. J., Schaminée, J. H. J. and Van Rooijen, N. M. (eds), Botanische meesterwerken. KNNV Uitgeverij, pp. 85–98. Google Scholar

    43.

    Haveman, R. 2021. Op dat hele kleine stukje aarde. Een plantensociologische vakantievertelling. – Stratiotes 56: 13–28. Google Scholar

    44.

    Haveman, R. and De Ronde, I. 2021. Eten is weten. Over plantensociologie, vegetatiekunde en kundig weten. – Stratiotes 57: 16–39. Google Scholar

    45.

    Hovenkamp, P. 1975. Mosvegetaties in Callunaheide. – Doctoraalscriptie Universiteit Leiden, 35p. Google Scholar

    46.

    James, P. W., Hawksworth, D. L. and Rose, F. 1977. Lichen communities in the British Isles; a preliminary conspectus. – In: Seaward, M. R. D. (ed.), Lichen ecology, vol. 10. Academic Press, pp. 295–413. Google Scholar

    47.

    Klement, O. 1955. Prodromus der mitteleuropäischen Flechtengesellschaften. – Feddes Repertorium. Beiheft 135. Beiträge zur Vegetationskunde, Band 1. Akademie Verlag. Google Scholar

    48.

    Kruijsen, B. W. J. M. 1982. Terrestrische en epilitische mosgezelschappen in grubben van het Savelsbos (Zuid-Limburg). – Doctoraalscriptie Rijksuniversiteit Utrecht, Instituut voor Systematische Plantkunde. Google Scholar

    49.

    Lara, F., Garilleti, R., Goffinet, B. et al. 2016. Lewinskya, a new genus to accommodate the phaneroporous and monoicous taxa of Orthotrichum (Bryophyta, Orthotrichaceae). – Cryptogam Bryol. 37: 361–382. Google Scholar

    50.

    Lecointe, A. 1978. Les associations bryologiques des éteules en Normandie (France). – Doc. Phytosociol. N.S. 2: 283–300. Google Scholar

    51.

    Lemaire, A. J. J., Schaminée, J. H. J. and Weeda, E. J. 1998. Isoeto-Nanojuncetea (Dwergbiezen-klasse). – In: Schaminée, J. H. J., Weeda, E. J. and Westhoff, V. (eds), De vegetatie van Nederland. Deel 4. Plantengemeenschappen van de kust en van binnenlandse pioniermilieus. Opulus Press, pp.147–172. Google Scholar

    52.

    Maas, F. M. 1959. Bronnen, bronbeken en bronbossen van Nederland, in het bijzonder die van de Veluwezoom. Een plantensociologische en oelogische studie. Dissertatie Landbouwhogeschool Wageningen. – Meded. Landbouwhogeschool Wageningen 59: 1–166. Google Scholar

    53.

    Marstaller, R. 2006. Syntaxonomischer Konspekt der Moosgesellschaften Europas und angrenzender Gebiete. – Haussknechtia Beiheft 13. Google Scholar

    54.

    Massé, L. 1964. Recherches phytosociologiques et écologiques sur les lichens des schistes rouges cambriens des environs de Rennes (i.-et-V.). – Vegetatio XII: 103–222. Google Scholar

    55.

    Masselink, A. K. 1994. Pionier- en licheenrijke begroeiingen op stuifzanden benoorden de grote rivieren: typologie en syntaxonomie. – Stratiotes 8: 32–62. Google Scholar

    56.

    Masselink, A. K. and Van Zanten, B. O. 1976. De bryofyten-flora van de Drentse hunebedden en zwerfkeien I: De hunebeddenflora. – Lindbergia 3: 323–31. Google Scholar

    57.

    Messe, V. 1982. La végétation bryophytique des chemins empierrés au Plateau des Tailles (Haute Ardenne Belge). – Bull. Soc. R. Bot. Belgique/Bull. Koninklijke Belgische Bot. Vereniging 115: 161–176. Google Scholar

    58.

    Mucina, L., Bültmann, H., Dierßen, K., et al. 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. – Appl. Veg. Sci. 19: 3–264. Google Scholar

    59.

    Mylona, S. 1996. Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions. – Tellus B. Chem. Phys. Meteorol. 48: 662–89. Google Scholar

    60.

    NBN 2023. Aplodon wormskioldii, Splachnum spp., Tetraplodon spp. distribution data. – National Biodiversity Network Atlas. Google Scholar

    61.

    Nieuwkoop, J. A. W. 2011. Physcomitrium eurystomum – Vervolg. – Mosmail (BLWG) 13. Google Scholar

    62.

    Nieuwkoop, J. A. W. 2016. Standplaatsen van Physcomitrium eurystomum (eirond knikkertjesmos) langs de Waal. – Buxbaumiella 105: 6–9. Google Scholar

    63.

    Ódor, P. and Van Hees, A. F. M. 2004. Preferences of dead wood inhabiting bryophytes for decay stage, log size and habitat types in Hungarian beech forests. – J. Bryol. 26: 79–95. Google Scholar

    64.

    Ódor, P., Heilmann-Clausen, J., Christensen, M. et al. 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. – Biol. Conserv. 131: 58–71. Google Scholar

    65.

    Philippi, G. 1965. Moosgesellschaft en des morschen Holzes und des Rohhumus im Schwarzwald in der Rhön, im Weserberglandund im Harz. – Nova Hedwigia IX: 185–232. Google Scholar

    66.

    PMD 2023. Splachnum ampullaceum, Splachnum sphericum, Tetraplodon angustatus, Tetraplodon mnioides distribution data. – Portal Moose Deutschlands. Google Scholar

    67.

    Ringelberg-Giesen, W. 1958. De mosvegetatie van rieten en strooien daken in de omgeving van Wijster. – Doctoraalscriptie Landbouwhogeschool Wageningen. Google Scholar

    68.

    Roux, C. 1981. Étude écologique et phytosociologique des peuplements lichéniques saxicoles-calcicoles du Sud-Est de la France. – Diss. Bot. Vaduz. Google Scholar

    69.

    Sawicki, J., Plášek, V. and Szczecińska, M. 2010. Molecular studies resolve Nyholmiella (Orthotrichaceae) as a separate genus. – J. Syst. Evol. 48: 183–194. Google Scholar

    70.

    Schaminée, J. H. J., Stortelder, A. F. H. and Westhoff, V. (eds). 1995a. De vegetatie van Nederland. Deel 1. Inleiding tot de plantensociologie: Grondslagen, methoden en toepassingen. – Opulus Press. Google Scholar

    71.

    Schaminée, J. H. J., Weeda, E. J. and Westhoff, V. (eds). 1995b. De vegetatie van Nederland. Deel 2. Plantengemeenschappen van wateren, moerassen en natte heiden. – Opulus Press. Google Scholar

    72.

    Schaminée, J. H. J., Stortelder, A. F. H. and Weeda, E. J. (eds). 1996. De vegetatie van Nederland. Deel 3. Plantengemeenschappen van graslanden, zomen en droge heiden. – Opulus Press. Google Scholar

    73.

    Schaminée, J. H. J., Weeda, E. J. and Westhoff, V. (eds). 1998. De vegetatie van Nederland. Deel 4. Plantengemeenschappen van de kust en binnenlandse pioniermilieus. – Opulus Press. Google Scholar

    74.

    Schaminée, J. H. J., Haveman, R., Hommel, P. W. F. M. et al. (eds). 2017. Revisie Vegetatie van Nederland. – Stratiotes 50/51: 1–232. Google Scholar

    75.

    Schelhaas, M. J., Teeuwen, S., Oldenburger, J. et al. 2022. Zevende Nederlandse bosinventarisatie. Methoden en resultaten. – Wageningen University and Research. WOt-rapport 142. Google Scholar

    76.

    Schlüsslmayr, G. 2005. Soziologische Moosflora des südostlichen Oberösterreich. – Stapfia 84. – Biology Centre of the Upper Austrian Museums. Google Scholar

    77.

    Schrijvers-Gonlag, M. 2019. Mossen- en korstmossengemeenschappen in Nederland: what's in a name? Toepassing van de International Code of Phytosociological Nomenclature in de praktijk. – Stratiotes 53: 23–38. Google Scholar

    78.

    Schrijvers-Gonlag, M. and Van Dort K. 2023. Data from: A synopsis of bryophyte-lichen syntaxa in the Netherlands. – DataverseNO,  https://doi.org/10.18710/L4IDNP .. Google Scholar

    79.

    Schrijvers-Gonlag, M., Van Dort, K. W. and Van Gennip, B. 2018. Mossen- en korstmossengemeenschappen in Nederland: standaardlijst, verspreiding, zeldzaamheid, trend en Rode Lijst-status. – Stratiotes 53: 23–38. Google Scholar

    80.

    Schubert, R. 2008. Die Moosgesellschaften des Nationalparks Harz. – Mitt florist Kart Sachsen-Anhalt. Sonderheft 5. Google Scholar

    81.

    Schubert, R. 2009. Synopsis der Moosgesellschaften Sachsen-Anhalts. – Schlechtendalia 18: 1–158. Google Scholar

    82.

    Schubert, R. and Stordeur, R. 2011. Synopsis der Flechtengesellschaften Sachsen-Anhalts. – Schlechtendalia 22: 1–88. Google Scholar

    83.

    Shakespeare, W. 1597. An excellent conceited tragedie of Romeo and Iuliet. As it hath been often (with great applause) plaid publiquely, by the right Honourable the L. of Hunsdon his Seruants. – Iohn Danter. Google Scholar

    84.

    Siebel, H. N. 1993. Indicatiegetallen van blad- en levermossen. – IBN-rapport 047. Wageningen. Google Scholar

    85.

    Siebel, H. N. 2005. Ecologische indicatiewaarden van mossen. – BLWG. Google Scholar

    86.

    Siebel, H. N. and Van Dort, K. W. 1999. Mossengemeenschappen in de plantensociologie. – Stratiotes 19: 37–49. Google Scholar

    87.

    Siebel, H. N., Van Tooren, B. F., Van Melick, H. M. H. et al. 2000. Bedreigde en kwetsbare mossen in Nederland. Basisrapport met voorstel voor de Rode Lijst. – Buxbaumiella 54: 1–86. Google Scholar

    88.

    Siebel, H. N., Bijlsma, R. J. and Sparrius, L. B. 2013. Basisrapport voor de Rode Lijst Mossen 2012. – BLWG Rapport 14. Bryologische en Lichenologische Werkgroep, Oude-Tonge. – Buxbaumiella 96: 1–75. Google Scholar

    89.

    Sparrius, L. B. and Timmerman, H. J. 2014. Lichenologische excursies op herhaling: een vergelijking van de situatie op de Noord-Veluwe, 1960–2014. – Buxbaumiella 100: 4–7. Google Scholar

    90.

    Sparrius, L. B., Aptroot, A. and Van Herk, C. M. 2015a. Ecological indicator values of lichens in the Netherlands. – BLWG. Google Scholar

    91.

    Sparrius, L. B., Aptroot, A. and Van Herk, C. M. 2015b. Ecologische indicatiewaarden voor korstmossen en een vergelijking met mossen en vaatplanten. – Buxbaumiella 104: 18–24. Google Scholar

    92.

    Spier, J. L. and Aptroot, A. 2000. Fellhaneretum myrtillicolae ass. nov., the lichen association on Vaccinium myrtillus. – Herzogia 14: 41–47. Google Scholar

    93.

    Stortelder, A. H. F., Schaminée, J. H. J. and Hommel, P. W. F. M. (eds). 1999. De vegetatie van Nederland. Deel 5: plantengemeenschappen van ruigten, struwelen en bossen. – Opulus Press. Google Scholar

    94.

    Sýkora, C. M. P. and Sýkora, K. V. 1987. Geschiedenis van de geobotanie. – De Levende Natuur 88: 7–11. Google Scholar

    95.

    Touw, A. 1963. Enkele cryptogamenvegetaties in stuifzanden en heiden. – Rapport Biologisch Station Wijster. Google Scholar

    96.

    Touw, A. 1969. On some liverwort communities in Dutch inland dunes and heaths. – Extrait de la Revue Bryologique et Lichénologique, T. XXXVI, Fasc.34. Google Scholar

    97.

    Van der Pluijm, A. and Boesveld, A. 2016. Baardmossen (Usnea spp.) in de Biesbosch, (vooral) vroeger en nu. – Buxbaumiella 107: 1–14. Google Scholar

    98.

    Van der Swaluw, E., Asman, W. A. H., Van Jaarsveld, H. et al. 2011. Wet deposition of ammonium, nitrate and sulfate in the Netherlands over the period 1992–2008. – Atmos Environ. 45: 3819–3826. Google Scholar

    99.

    Van Dort, K. W. and Siebel, H. N. 1995. Mossengemeenschappen van Nederland; een eerste aanzet. – Stratiotes 10: 28–32. Google Scholar

    100.

    Van Dort, K. W., Van Gennip, B. and Schrijvers-Gonlag, M. (eds). 2017. De vegetatie van Nederland. Deel 6. Mossen- en korstmossengemeenschappen. – KNNV Uitgeverij, XVIII+518p. Google Scholar

    101.

    Van Herk, C. M. and Spier, J. L. 1994. Een lichenologisch onderzoek met de ladder. – Buxbaumiella 33: 21–25. Google Scholar

    102.

    Van Herk, C. M., Spier, J. L., Aptroot, A. et al. 2000. De korstmossen van het Speulderbos, vroeger en nu. – Buxbaumiella 51: 33–44. Google Scholar

    103.

    Van Landuyt, W., De Beer, D., Raeymaekers, G. et al. 2020. Voorlopige verspreidingsatlas van de Hauw-, Lever- en Bladmossen van Vlaanderen. – INB rapport 46. Instituut voor Natuur- en Bosonderzoek. Google Scholar

    104.

    Van Zanten, M. C., Wichink Kruit, R. J., Hoogerbrugge, R. et al. 2017. Trends in ammonia measurements in the Netherlands over the period 1993–2014. – Atmos Environ. 148: 352–360. Google Scholar

    105.

    Von Hübschmann, A. 1953. Einige hygro- und hydrophile Moosgesellschaften Norddeutschlands. – Mitteilungen der Floristisch-soziologischen Arbeitsgemeinschaft. N.F. Heft 4, pp. 15–25. Google Scholar

    106.

    Von Hübschmann, A. 1986. Prodromus der Moosgesellschaften Zentraleuropas. – Bryophytorum Bibliotheca, Band 32. Google Scholar

    107.

    Walsh, H. 1951. Spore dispersal in Splachnum ovatum. – Bryol. Notes Trans. Brit. Bryol. Soc. 1: 487. Google Scholar

    108.

    Weber, H. E., Moravec, J. and Theurillat, J.-P. 2000. International Code of Phytosociological Nomenclature, 3rd edn. – J. Veg. Sci. 11: 739–768. Google Scholar

    109.

    Weeda, E. J. 1994. Over Kegelmos (Conocephalum conicum (L.) Underw.) en het Pellio-Conocephaletum, in het bijzonder in Twente. – Stratiotes 8: 12–31. Google Scholar

    110.

    Weeda, E. J., Van't Veer, R. and Schaminée, J. H. J. 1998. Bidentetea tripartitae (Tandzaad-klasse). – In: Schaminée, J. H. J., Weeda, E. J. and Westhoff, V. (eds), De vegetatie van Nederland. Deel 4. Plantengemeenschappen van de kust en van binnenlandse pioniermilieus. Opulus Press, pp. 173–198. Google Scholar

    111.

    Westhoff, V., Van Dijk, J. W. and Passchier, H. 1942. Overzicht der plantengemeenschappen in Nederland. – Uitgaven der Ned. Natuurhist. Vereeniging, No. 7. Uitgaven van den Ned. Jeugdbond v. Natuurstudie, No. 7. G.W. Breugel,'s-Graveland. Google Scholar

    112.

    Wever, D., Dröge, P. W. H. G., Geilenkirchen, G. P. et al. 2022. Informative Inventory Report 2022. Emissions of transboundary air pollutants in the Netherlands 1990–2020. – RIVM rapport 2022-0004. National Institute for Public Health and the Environment. Google Scholar

    113.

    Wickham, H. 2016. ggplot2: elegant graphics for data analysis. – Springer. Google Scholar

    114.

    Wijdeven, S. M. J. 2005. Dood hout in het Nederlandse bos. – In: Jagers op Akkerhuis, G. A. J. M., Wijdeven, S. M. J., Moraal, L. G. et al. Dood hout en biodiversiteit: Alterra-rapport 1320. Alterra, 21–44. Google Scholar

    115.

    Wirth, V. 1980. Flechtenflora. Ökologische Kennzeichnung und Bestimmung der Flechten Südwestdeutschlands und angrenzender Gebiete. – Uni-Taschenbücher 1062. Verlag Eugen Ulmer. Google Scholar

    116.

    Wirth, V. 1995. Die Flechten Baden-Württembergs. Teil 1 & 2. – Verlag Eugen Ulmer. Google Scholar
    Marcel Schrijvers-Gonlag and Klaas van Dort "A synopsis of bryophyte-lichen syntaxa in the Netherlands," Lindbergia 2023(1), (29 June 2023). https://doi.org/10.25227/linbg.24635
    Accepted: 4 April 2023; Published: 29 June 2023
    KEYWORDS
    bryolichenosociology
    Bryophytes
    Lichens
    phytosociology
    Syntaxonomy
    the Netherlands
    Back to Top