BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Ecosystem services in the mountainous Salinas and Aguada Blanca National Reserve in Peru are under pressure, and perspectives on possible solutions depend on the different stakeholders' understanding of these services and their interests in them. We describe the application of the foresight approach to integrate various stakeholders' perspectives on the future of ecosystem services in the reserve. Ultimately, the purpose of this approach is to achieve an inclusive and viable plan for conservation and management of existing resources. The participatory analysis provided local people's perceptions of bofedal (wetland) and tolar (shrubland) ecosystem services, as well as their assessment of likely scenarios for the future. We identified 2 important factors in the hypotheses the local people provided: extreme events such as water scarcity and drought, and participation of the private sector in water distribution. Participants estimated that water storage and fuel for cooking were likely to have the strongest effects on current and future ecosystem services. Based on this, we jointly developed hypotheses using a stepwise approach and used software to calculate probabilities in a systematic way and produce a series of scenarios. The likelihood of these scenarios was also assessed by groups of stakeholders, yielding 5 scenarios for consideration in designing management plans. Future scenarios are highly dependent on proper management of the bofedal. We conclude that foresight helps to involve local people better in the process of developing viable strategies for the future of the reserve and for the conservation of the natural resources that it harbors.
We researched local residents' perceptions of a dam and reservoir construction project in the Teesta River catchment basin (Darjeeling Himalayas) within 1.5 years of its completion, using a questionnaire survey. Most survey participants expressed negative perceptions of the project, citing a declining quality of life (loss of jobs and loss of access to river sites that had been important for religious practices and livelihoods) and a sense of insecurity (risk of landslides). These results may help predict attitudes toward similar reservoir projects that are planned for the Teesta basin.
This study assessed the regeneration status of tree species at different elevations in Himalayan forests. For this purpose, we assessed the densities of seedlings, saplings, and adult trees of various forest-forming species to understand their population structure and regeneration patterns. Five elevational ranges—<2000, 2000–2500, 2500–3000, 3000–3500, and >3500 m above sea level—were selected in various ranges in the Bhagirathi River catchment area in the Garhwal Himalaya. The highest species richness was recorded at the lowest elevational range, and the lowest species richness was recorded at the highest elevational range. Species diversity, measured using the Simpson and Shannon–Wiener diversity indices, was highest at the lowest elevations and lowest at the highest elevations. Abies spectabilis, Cedrus deodara, Rhododendron arboreum, Pinus roxburghii, and Quercus oblongata were dominant and widely adapted with appropriate regeneration potential at various elevations, whereas Aesculus indica, Juglans regia, and Sorbus cuspidata showed less ability to regenerate, indicating a threat to their survival in the near future. Tree species of subalpine forests Abies pindrow, A. spectabilis, Acer acuminatum, Betula utilis, and R. arboreum were observed to expand their upper limits into alpine meadows. Weak regeneration by some dominant tree species, and expansion by a few less-dominant or even rare species, indicate likely future compositional changes in Himalayan forests.
Karst forests are often located in mountainous regions, and because of various geological factors both soil and water loss are major conservation concerns. We investigated the water-holding characteristics of 3 typical karst forest types through field sampling and laboratory experiments. The results showed that (1) the total litter mass of the coniferous forest was significantly higher than that of either the mixed forest or the broadleaved forest; (2) the mass of semidecomposed litter was significantly higher than that of undecomposed litter; (3) the litter layers of the mixed and coniferous forests had similar maximum water-holding capacity, whereas the maximum water-holding capacity of the broadleaved forest was significantly lower; (4) the maximum water-retention capacity of both the mixed and coniferous forests was significantly higher than that of the broadleaved forest; and (5) water-absorption rate and maximum water-holding capacity varied significantly across forest and litter types, with the mixed forest and undecomposed litter layers tending both to hold more water and to absorb water more quickly than the other forest types or the semidecomposed litter layer. Because of the elevated water-holding capacity and absorption rate of the mixed forest in karst regions, special emphasis on the conservation of this complex forest ecosystem is critical from both hydrological and ecological perspectives.
Understanding the magnitude and drivers of land cover change is key to designing effective natural resource management interventions and restoring degraded landscapes. We analyzed land cover change from 1995 to 2015 in Fagita Lekoma District in northwestern Ethiopia using Landsat images and found that forest cover increased by 1.2% per year, while areas covered by cropland decreased by 1% per year. The increase in forest cover is mainly attributable to increased planting of Acacia decurrens. The expansion of A. decurrens plantations could be attributed to its potential to provide short-term economic benefits. This indicates that economic activities that generate short-term benefits may strongly influence the selection of land uses in the study area. Planting of A. decurrens generates job opportunities for the landless and enables farmers to diversify their livelihoods. It rarely restricts other agricultural practices, as farmers are able to grow cereals between the trees in the first 2 years following the establishment of an A. decurrens plantation. This enhances the efficient utilization of farmlands and diversifies agricultural products. Providing training to farmers on silvicultural practices and presenting alternative tree species are crucial to enhance their benefits and sustain charcoal production in such mountainous regions. Studies are required to understand how the observed land cover change affects land productivity, landscape, and biodiversity.
Roger Sayre, Charlie Frye, Deniz Karagulle, Jürg Krauer, Sean Breyer, Peter Aniello, Dawn J. Wright, Davnah Payne, Carolina Adler, Harumi Warner, D. Paco VanSistine, Jill Cress
Answers to the seemingly straightforward questions “what is a mountain?” and “where are the mountains of the world?” are in fact quite complex, and there have been few attempts to map the mountains of the earth in a consistent and rigorous fashion. However, knowing exactly where mountain ecosystems are distributed on the planet is a precursor to conserving them, as called for in Sustainable Development Goals 6 and 15 of the United Nations 2030 Agenda for Sustainable Development. In this article we first compare 3 characterizations of global mountain distributions, including a new, high-resolution (250 m) map of global mountains derived from terrain characteristics. We show how differences in conceptual definition, methodology, and spatial resolution of source data can result in differences in the extent and location of lands classed as mountains. For example, the new 250-m resource documents a larger global mountain extent than previous characterizations, although it excludes plateaus, hilly forelands, and other landforms that are often considered part of mountain areas. We then introduce the Global Mountain Explorer, a new web-based application specifically developed for exploration, visualization, and comparison of these maps. This new open-access tool is an intuitive and versatile resource suitable for a broad range of users and applications.
This article discusses current European migration flows, their impacts on the European Alps, and future options for addressing issues of migration. It explores these issues from the perspective of regional development, taking into account the currently prevailing goals of economic competitiveness and local self-interest. It focuses on the Alps, a region in which rural areas are losing economic, demographic, and decision-making power due to outmigration. An end to outmigration in the Alps is currently unlikely, but there may be other ways to stem the resulting losses. Based on a review of migration literature and 3 case studies, the article explores ways in which programs for hosting and integrating migrants can also benefit long-time residents by contributing in many different ways to the development of mountain areas. From this perspective, efforts to integrate migrants can be seen as a form of social innovation that can contribute to the future of the entire Alpine economic space. Rather than focusing on drivers of migration or its humanitarian or constitutional aspects, the paper explores the potential benefits to all parties of a better integration of migrants into the host regions, and the possibility that this could become a model of social innovation. It suggests an agenda for research on how to reach this potential and agenda points for policy regarding measures to fulfill the potential.
Carolina Adler, Elisa Palazzi, Aino Kulonen, Jörg Balsiger, Guido Colangeli, Douglas Cripe, Nathan Forsythe, Grace Goss-Durant, Yaniss Guigoz, Jürg Krauer, Davnah Payne, Nicholas Pepin, Manuel Peralvo, José Romero, Roger Sayre, Maria Shahgedanova, Rolf Weingartner, Marc Zebisch
Mountains are globally distributed environments that provide significant societal benefits, a function that is increasingly compromised by climatic change, environmental stress, political and socioeconomic transformations, and unsustainable use of natural resources. Gaps in our understanding of these processes and their interactions limit our capacity to inform decisions, where both generalities of mountain regions (eg climate processes) and specificities (eg context-specific manifestations of climate risks) matter. The Global Network for Observations and Information on Mountain Environments (GEO-GNOME), a Group on Earth Observations initiative, aims to fill these gaps through accessible Earth Observation (EO) as well as in-situ data and information on global change drivers, conditions, and trends. A workshop convened by the Mountain Research Initiative (MRI) revised GEO-GNOME's work plan, galvanizing a network that promotes relevant monitoring of global change in mountains and is responsive to the integrated knowledge needs of policy, research, and management.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere