Sahar Ghafari, Ardavan Ghorbani, Mehdi Moameri, Raoof Mostafazadeh, Mahmood Bidarlord, Azad Kakehmami
Mountain Research and Development 40 (1), R37-R47, (16 December 2020) https://doi.org/10.1659/MRD-JOURNAL-D-18-00089.1
KEYWORDS: diversity index, Elevation gradient, grazing pressure, importance value index, Species composition
This study evaluated the distribution pattern, species diversity index (richness, diversity, and evenness), importance value index (IVI), and family importance value (FIV) of all vascular plant species and various plant community life-form spectra along the Moghan Plain–Sabalan Mountain rangelands, Ardabil province, Iran. Sampling was conducted in 11 elevation classes at 300-m elevation intervals (100–3300 masl). In each elevation interval, 30 quadrats (1 × 1 m) were laid to collect vegetation data. Different vegetation attributes (density, frequency, and canopy cover) were measured for each quadrat. Regression analyses were employed to explore the interrelation of elevation with diversity, species richness, evenness, and IVI. In total, 251 species (143 genera, 38 families) were recorded across the study area. Poaceae, Fabaceae, and Asteraceae were most dominant families according to the FIV. According to the IVI, Poa bulbosa, Festuca ovina, Medicago minima, and Artemisia austriaca were the dominant species along the elevation gradient. Total diversity and species richness showed a normal distribution along the elevation gradient. Overall, hemicryptophytes and therophytes were the dominant life forms, while chamaephytes and geophytes were less frequent forms. The life-form patterns changed along elevation gradients. While the diversity and species richness values of therophytes and chamaephytes showed a decreasing trend, hemicryptophytes increased with increasing elevation. Diversity, species richness, and evenness of geophytes were not significantly different across the elevation gradient. Class I (highly palatable) and class II (mostly palatable) species declined as the elevation increased and then increased, while class III (hardly or unpalatable) species showed a reverse trend. The difference in the abundance and distribution of species in elevation classes could be related to resource availability, overlap of habitats, habitat patchiness, land area, degree of human influence, or biotic disturbances.