Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The Main Karoo Basin of South Africa contains a near-continuous sequence of continental deposition spanning ∼80 Myr from the mid-Permian to the Early Jurassic. The terrestrial vertebrates of this sequence provide a high-resolution stratigraphic record of regional origination and extinction, especially for the mid-late Permian. Until now, data have only been surveyed at coarse stratigraphic resolution using methods that are biased by nonuniform sampling rates, limiting our understanding of the dynamics of diversification through this important time period. Here, we apply robust methods (gap-filler and modified gap-filler rates) for the inference of patterns of species richness, origination rates, and extinction rates to a subset of 1321 reliably-identified fossil occurrences resolved to approximately 50m stratigraphic intervals. This data set provides an approximate time resolution of 0.3–0.6 Myr and shows that extinction rates increased considerably in the upper 100m of the mid-Permian Abrahamskraal Formation, corresponding to the latest part of the Tapinocephalus Assemblage Zone (AZ). Origination rates were only weakly elevated in the same interval and were not sufficient to compensate for these extinctions. Subsampled species richness estimates for the lower part of the overlying Teekloof Formation (corresponding to the Pristerognathus and Tropidostoma AZs) are low, showing that species richness remained low for at least 1.5–3 million years after the main extinction pulse. A high unevenness of the taxon abundance-frequency distribution, which is classically associated with trophically unstable postextinction faunas, in fact developed shortly before the acme of elevated extinction rates due to the appearance and proliferation of the dicynodont Diictodon. Our findings provide strong support for a Capitanian (“end-Guadalupian”) extinction event among terrestrial vertebrates and suggest that further high-resolution quantitative studies may help resolve the lack of consensus among paleobiologists regarding this event.
Certain taxa are noticeably common within collections, widely distributed, and frequently long-lived. We have examined these dominant genera as compared with rarer genera, with a focus on their temporal histories. Using occurrence data from the Paleobiology Database, we determined which genera belonging to six target groups ranked among the most common within each of 49 temporal bins based on occurrences. The turnover among these dominant taxa from bin to bin was then determined for each of these groups, and all six groups when pooled. Although dominant genera are only a small fraction of all genera, the patterns of turnover mimic those seen in much larger compilations of total biodiversity. We also found that differences in patterns of turnover at the top ranks among the higher taxa reflect previously documented comparison of overall turnover among these classes. Both dominant and nondominant genera exhibit, on average, symmetrical patterns of rise and fall between first and last appearances. Dominant genera rarely begin at high ranks, but nevertheless tend to be more common when they first appear than nondominant genera. Moreover, dominant genera rarely are in the top 20 when they last appear, but still typically occupy more localities than nondominant genera occupy in their last interval. The mechanism(s) that produce dominant genera remain unclear. Nearly half of dominant genera are the type genus of a family or subfamily. This is consistent with a simple model of morphological and phylogenetic diversification and sampling.
The quantity of biomass in an ecosystem is constrained by energy availability. It is less clear, however, how energy availability constrains taxonomic and functional diversity. Competing models suggest biodiversity is either resource-limited or far from any bound. We test the hypothesis that functional diversity in marine bivalve communities is constrained by energy availability, measured as particulate organic carbon (POC) flux, in the modern oceans. We find that POC flux predicts the relative prevalence of ecological modes in both the Atlantic and Pacific Oceans. Moreover, the associations of ecological modes with POC fluxes are similar between the Atlantic and Pacific despite being based on independent sets of species, indicating a direct causal relationship. We then use the relationship between POC flux and the prevalence of functional groups in the modern to test the hypothesis that the trend of increasing functional diversity in bivalves across the past 500 Myr has occurred in response to increased POC flux. We find no evidence that the earliest-appearing modes of life are preferentially associated with low-POC environments or that the mean POC flux experienced by marine bivalves has increased across geological time. To reconcile the close association between ecological mode and POC flux in the modern oceans with the lack of evidence for increasing POC fluxes across time, we propose that POC flux has not increased substantially over time but, rather, the increase in bivalve functional diversity enabled bivalves to become more abundant, to occupy a broader range of environments, and to capture a greater fraction of the total POC flux. The results here suggest at the geographic scale of oceans and through geologic time bivalve diversity was not bounded by food availability.
Comprising Holostei and Teleostei, the ∼ 32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years—roughly 60%—of their history (Triassic-Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns ofmorphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic–Early Cretaceous interval, but insteadmaintain their Toarcian–Callovian variety until the end of the Early Cretaceouswithout substantial further expansions.After a conservative Induan–Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare. Furthermore, apomorphy-defined teleosts possess greater phenotypic variety than typically assumed. Comparison of crown and stem teleost partial disparity indicates that, despite a statistically significant increase in crown teleost disparity between the Late Jurassic and earliest Cretaceous, stem teleosts remained important long-term contributors to overall teleost disparity during this time.
The fossil record of mammal dentition provides crucial insight into key ecological and functional transitions throughout mammalian evolutionary history. For cetaceans, both extant clades differ markedly from their stem ancestors; neither retains the differentiated dentition or the tribosphenic molars characteristic of Mammalia. We used quantitative measures of dental complexity across fossil and living cetaceans to identify a trend toward dental simplicity through the Neogene. Both extant cetacean clades depart from the ancestral mammalian condition and concurrently converge upon a reduced and simplified dentition; modern mysticetes all have become entirely edentulous (at birth), and living odontocetes possess teeth as single-rooted, conical pegs. These two parallel trends accompany major shifts in feeding strategy (i.e., filter feeding in mysticetes and echolocation in odontocetes), suggesting that these evolutionary innovations for prey acquisition are enabling factors for the loss of prey processing and subsequent convergence on dental simplification.
Although generally considered rare in gastropods, septation has long been noted in turritellids, but functional hypotheses do not survive strong scrutiny. Here we outline a methodology for testing spandrel hypotheses and apply it to the problem of turritellid septa. We follow Gould in using “spandrel” as a term for all features that are nonadaptive sequelae of adaptive features of organisms, including those that are structurally necessary, those that are developmentally correlated, and nondeterministic by-products that are correlated to features under selection.
In turritellids, septa are constructed inmicrostructural continuity with secondary internal thickening of the shell, are highly variable features infraspecifically, and are strongly associated with degree of shell thickening. We therefore conclude that rather than being themselves adaptive, turritellid septa are spandrels of shell thickening. Turritellid septa are composed of crossed lamellar aragonite, which appears to be constructed by mantle epithelium over the visceral mass. Septation was also found in 22 of 24 gastropod families examined from a broad phylogenetic distribution. Septa thus appear to be a widespread feature of caenogastropods, in strong contrast to previous assertions that septa are less common in modern or high-spired shells.
We report a detailed study of the different categories and types of abnormal morphologies in planktic foraminifera recognizable in the lowermost Danian, mainly from the El Kef and Aïn Settara sections, Tunisia. Various types of abnormalities in the test morphology were identified, including protuberances near the proloculus, abnormal chambers, double or twinned ultimate chambers, multiple ultimate chambers, abnormal apertures, distortion in test coiling, morphologically abnormal tests, attached twins or double tests, and general monstrosities. Detailed biostratigraphic and quantitative studies of the Tunisian sections documented a major proliferation of aberrant planktic foraminifera (between approximately 5% and 18% in relative abundance) during the first 200 Kyr of the Danian, starting immediately after the Cretaceous/Paleogene (K/Pg) boundary mass extinction (spanning from the Guembelitria cretacea Zone to the lower part of the P. pseudobulloides Zone). This contrasts with the proportionately low frequency of aberrant tests (generally <2%) identified within the uppermost Maastrichtian, suggesting more stable environmental conditions during the last ~ 50–100 Kyr of the Cretaceous. Two main pulses with abundant aberrant tests were recognized in the earliest Danian, the one recorded in the well-known K/Pg boundary clay being the more intense of those (maxima of >18%). These main pulses of aberrants coincide approximately with relevant quantitative and evolutionary turnovers in the planktic foraminiferal assemblages. In this paper, we explore the relation of these high values of the foraminiferal abnormality index with the environmental changes induced by the meteorite impact of Chicxulub in Yucatan, Mexico, and the massive eruptions of the Deccan Traps, India.
The placement of angiosperms and Gnetales in seed plant phylogeny remains one of the most enigmatic problems in plant evolution, with morphological analyses (which have usually included fossils) and molecular analyses pointing to very distinct topologies. Almost all morphology-based phylogenies group angiosperms with Gnetales and certain extinct seed plant lineages, while most molecular phylogenies link Gnetales with conifers. In this study, we investigate the phylogenetic signal present in published seed plant morphological data sets. We use parsimony, Bayesian inference, and maximum-likelihood approaches, combined with a number of experiments with the data, to address the morphological–molecular conflict. First, we ask whether the lack of association of Gnetales with conifers in morphological analyses is due to an absence of signal or to the presence of competing signals, and second, we compare the performance of parsimony and model-based approaches with morphological data sets. Our results imply that the grouping of Gnetales and angiosperms is largely the result of long-branch attraction (LBA), consistent across a range of methodological approaches. Thus, there is a signal for the grouping of Gnetales with conifers in morphological matrices, but it was swamped by convergence between angiosperms and Gnetales, both situated on long branches. However, this effect becomes weaker in more recent analyses, as a result of addition and critical reassessment of characters. Even when a clade including angiosperms and Gnetales is still weakly supported by parsimony, model-based approaches favor a clade of Gnetales and conifers, presumably because they are more resistant to LBA. Inclusion of fossil taxa weakens rather than strengthens support for a relationship of angiosperms and Gnetales. Our analyses finally reconcile morphology with molecules in favoring a relationship of Gnetales to conifers, and show that morphology may therefore be useful in reconstructing other aspects of the phylogenetic history of the seed plants.
Feeding behaviors may differ between past and current predators due to differences in the environments inhabited by these species at different times. We provide an example of this behavioral variability in spotted hyena (Crocuta crocuta), for which our analysis of a late Pleistocene micromammal assemblage indicates that hyenas preyed upon small rodents, a feeding habit that is rarely observed today among hyenas.
The Bois Roche cave site is situated at the edge of a low bluff overlooking the floodplain of a small stream in Cherves-Richemont (Charente, France). The deposits are dated by electron spin resonance (ESR) to about 69.7 ± 4.1 Ka. Excavations at the site recovered fossil bones and teeth of large and small mammals, together with hyena coprolites. Water screening of the sediments produced large accumulations of rodent remains with low taxonomic diversity. Small mammal bones were recovered from hyena coprolites as well. Descriptions of small mammal bone modification, both from the sediments and coprolites, are reported here. The analysis yielded a distinct taphonomic pattern representative of large carnivores (over 30 kg), which differs from any other modern or fossil predator-accumulated microfaunal assemblage taphonomically analyzed to date. To our knowledge, previous studies of hyena diet have not recorded high concentrations of a single-rodent prey species. Weconclude that the lowspecies diversity of this small mammal assemblage most likely relates to a local abundance of the prey species due to an outbreak in the rodent population, rather than from specialist predator behavior and hunting technique.
Ecophenotypic variation in populations is driven by differences in environmental variables. In marine environments, ecophenotypic variation may be caused by differences in hydrodynamic conditions, substrate type, water depth, temperature, salinity, oxygen concentration, and habitat heterogeneity, among others. Instances of ecophenotypic variation in modern and fossil settings are common, but little is known about the influences of time averaging and spatial averaging on their preservation. Here we examine the shell morphology of two adjacent populations, both live collected and death assemblages, of the infaunal, suspension-feeding, intertidal bivalve Leukoma staminea from the well-studied Argyle Creek and Argyle Lagoon locations on San Juan Island, Washington. Individuals in the low-energy lagoon are free to burrow in the fine-grained substrate, while clams in the high-energy creek are precluded from burrowing in the rocky channel. Our results demonstrate variation in size and shape between the adjacent habitats. Lagoon clams are larger, more disk-shaped, and have relatively larger siphons than their creek counterparts, which are smaller, more spherical in shape, and have a relatively shallower pallial sinus. This ecophenotypy is preserved among death assemblages, although with generally greater variation due to time averaging and shell transport. Our interpretation is that ecophenotypic variation, in this case, is induced by differing hydrodynamic regimes and substrate types, cumulatively resulting in physiological trade-offs diverting resources from feeding and respiration to stability and shell strength, all of which have the potential to be preserved in the fossil record.
Taphonomic factors may significantly alter faunal assemblages at varying scales. An exceptional record of late Holocene (<4000 yr old) mammal faunas establishes a firm baseline to investigate the effects of scale on taphonomy. Our sample contains 73 sites within four contiguous states (North Dakota, South Dakota, Iowa, and Illinois, USA) that transect a strong modern and late Holocene environmental gradient, the prairie-forest ecotone. We performed detrended correspondence (DCA) and non-metric multidimensional scaling (NMDS) analyses. Both DCA and NMDS analyses of the data sets produced virtually the same results, and both failed to reveal the known ecological gradient within each state. However, both DCA and NMDS analyses of the unfiltered multistate data set across the entire gradient clearly reflect an environmental, rather than taphonomic, signal. DCA tended to provide better separation of some clusters than did NMDS in most of the analyses. We conclude that a robust mammal data set collected across a strong environmental gradient will document species turnover without the removal of taphonomic factors. In other words, taphonomy exhibits varying scale-dependent effects.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere