Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Ana L. P. Nery, Frank H. Quina, Paulo F. Moreira, Jr, Carlos E. R. Medeiros, Wilhelm J. Baader, Karina Shimizu, Luiz H. Catalani, Etelvino J. H. Bechara
β- and γ-lumicolchicines are photoproducts formed by the cycloisomerization of the tropolone ring of colchicine (COL) alkaloids. The mechanism of the photoconversion, suggested to involve the triplet state, is examined here by studying the effect of the solvent polarity on the lumicolchicine photoisomer ratio. Triplet COL, detected by laser flash photolysis, is quenched by oxygen, but not by trans-stilbene or 1-methylnaphtalene. Neither the quantum yield of conversion of COL nor the photoproduct ratio was altered by the presence of oxygen. Likewise, energy transfer to COL from triplet acetone produced by either isobutanal/horseradish peroxidase system or tetramethyldioxetane thermolysis failed to provoke photoreaction of COL. Our data argue against the intermediacy of a COL triplet state in the photoisomerization and stress on the role of specific solvent–solute interactions in determining the partitioning of excited singlet state into the β- and γ-isomer formation.
We have attempted subpicosecond time-resolved absorption spectroscopy of all-trans-β-carotene in organic solvents in the 820–1060 nm region and found novel transient absorption features which lived in subpicosecond time scales. A first component that appeared immediately after excitation showed a lifetime of 190 ± 10 fs in n-hexane in agreement with the 1Bu lifetime that had been determined by fluorescence upconversion spectroscopy (195 ± 10 fs). (Kandori et al. [1994] J. Am. Chem. Soc. 116, 2671–2672.) Therefore, this component is assigned to a transient absorption from the 1Bu state.
The ground- and excited-state interactions of polymethylene-linked 1,8-naphthalimide–viologen dyads with calf-thymus DNA have been investigated. By virtue of the covalently attached viologen, the compounds represent the first example of linked chromophore/cosensitizer systems in the photooxidation of duplex DNA. The compounds associate strongly with DNA. Analysis of ground-state spectral changes yield binding constants of 0.7–2.5 × 106M−1. Upon 355 nm pulsed irradiation of the compounds in the presence of calf-thymus DNA, reduced viologen is observed within the laser pulse. Photoproducts are not observed on this time scale in the absence of DNA. Since ground-state bleaching of the naphthalimide was not observed, the results suggest that DNA nucleobases are the species being oxidized. The quantum efficiency of radical production increases with the extent of binding to DNA. Under conditions where the compounds are bound predominantly to DNA, the quantum efficiencies were found to range from 0.02 to 0.03. Although small, the values represent a substantial increase in charge-separation yield compared to 1,8-naphthalimide compounds that lack the covalently attached viologen. The mechanism of radical production and effect of number of intervening methylenes are discussed.
Fluoroquinolone (FQ) antibacterials are known to exhibit photosensitization properties leading to the formation of oxidative damage to DNA. In addition, photoexcited lomefloxacin (Lome) was recently shown to induce the formation of cyclobutane pyrimidine dimers via triplet–triplet energy transfer. The present study is aimed at gaining further insights into the photosensitization mechanisms of several FQ including enoxacin (Enox), Lome, norfloxacin (Norflo) and ofloxacin (Oflo). This was achieved by monitoring the formation of DNA base degradation products upon UVA-mediated photosensitization of 2′-deoxyguanosine, isolated and cellular DNA. Oflo and Norflo act mainly via a Type-II mechanism whereas Lome and, to a lesser extent, Enox behave more like Type-I photosensitizers. However, the extent of oxidative damage was found to be relatively low. In contrast, it was found that cyclobutane thymine dimers represent the major class of damage induced by Enox, Lome and Norflo within isolated and cellular DNA upon UVA irradiation. This striking observation confirms that FQ are able to promote efficient triplet energy transfer to DNA. The levels of photosensitized formation of strand breaks, alkali-labile sites and oxidative damage to cellular DNA, as measured by the comet assay, were confirmed to be rather low. Therefore, we propose that the phototoxic effects of FQ are mostly accounted for energy transfer mechanism rather than by Type-I or -II photosensitization processes.
trans-Urocanic acid (UCA) acts as a chromophore for UV radiation in the epidermis and isomerizes to cis-UCA which then initiates some of the changes leading to UV-induced immunosuppression. The mechanism of the immunomodulation by cis-UCA is unknown at present, but one possibility is that the interaction between cis-UCA and keratinocytes causes the release of immunosuppressive cytokines locally. To test this hypothesis, PAM-212 cells, a murine keratinocyte cell line, were incubated with 0.10–100 μg/mL trans- and cis-UCA for 6 or 24 h, respectively. The expression of interleukin (IL)-10, transforming growth factor (TGF)-β and tumor necrosis factor (TNF)-α messenger RNA (mRNA) was then measured by reverse transcription-polymerase chain reaction in comparison with the mRNA for the house-keeping gene, β-actin. No change or significant induction of any of the cytokine messages occurred. However, the expression of IL-10 messenger RNA (mRNA) was induced 24 h after UVB irradiation (300 J/m2) and that of TNF-α mRNA occurred 6 h after treatment with phorbol myristate acetate. The expression of IL-10 protein was also examined by immunostaining in both PAM-212 cells and B16-F10 murine melanoma cells between 3 and 48 h after incubation with 10 and 100 μg/mL cis- and trans-UCA. No alteration was seen with either isomer at either concentration. In contrast, UVB irradiation of both cell lines resulted in a marked increase in intracellular IL-10 protein at 24 and 48 h. Therefore the upregulation of the immunosuppressive cytokines, IL-10, TNF-α and TGF-β, in keratinocytes is unlikely to be the mechanism by which cis-UCA induces immunosuppression in mice.
The energy and oscillator strength of electronic transitions of chlorophyll (Chl)–amino acid complexes were calculated by using molecular orbital methods. The energies varied widely with coordinated amino acids and the difference between the maximum and minimum energy was about 830 cm−1. This energy difference was comparable with the spreading of absorption bands for light-harvesting Chl–protein complexes of photosystem II (LHC II) of green plants. The feature of the Qy band for pea LHC II was interpreted with the aid of the calculated energies and oscillator strengths. Four spectral components of the band were assigned to individual Chl–amino acid complexes.
We assessed the contribution of UV-induced violet–blue–green leaf fluorescence to photosynthesis in Poa annua,Sorghum halepense and Nerium oleander by measuring UV-induced fluorescence spectra (280–380 nm excitation, 400–550 nm emission) from leaf surfaces and determining the monochromatic UV action spectra for leaf photosynthetic O2-evolution. Peak fluorescence emission wavelengths from leaf surfaces ranged from violet (408 nm) to blue (448 nm), while excitation peaks for these maxima ranged from 333 to 344 nm. Action spectra were developed by supplementing monochromatic radiation from 280 to 440 nm, in 20 nm increments, to a visible nonsaturating background of 500 μmol m−2 s−1 photosynthetically active radiation and measuring photosynthetic O2-evolution rates. Photosynthetic rates tended to be higher with the 340 nm supplement than with higher or lower wavelength UV supplements. Comparing photosynthetic rates with the 340 nm supplement to those with the 400 nm supplement, the percentage enhancement in photosynthetic rates at 340 nm ranged from 7.8 to 9.8%. We suspect that 340 nm UV improves photosynthetic rates via fluorescence that provides violet–blue–green photons for photosynthetic energy conversion because (1) the peak excitation wavelength (340 nm) for violet–blue–green fluorescence from leaves was also the most effective UV wavelength at enhancing photosynthetic rates, and (2) the magnitude of photosynthetic enhancements attributable to supplemental 340 nm UV was well correlated (R2 = 0.90) with the apparent intensity of 340 nm UV-induced violet–blue–green fluorescence emission from leaves.
Judith Zilberstein, Smadar Schreiber, Monique C. W M. Bloemers, Peter Bendel, Michal Neeman, Edna Schechtman, Fortune Kohen, Avigdor Scherz, Yoram Salomon
We describe here a strategy for photodynamic eradication of solid melanoma tumors that is based on photoinduced vascular destruction. The suggested protocol relies on synchronizing illumination with maximal circulating drug concentration in the tumor vasculature attained within the first minute after administrating the sensitizer. This differs from conventional photodynamic therapy (PDT) of tumors where illumination coincides with a maximal concentration differential of sensitizer in favor of the tumor, relative to the normal surrounding tissue. This time window is often achieved after a delay (3–48 h) following sensitizer administration. We used a novel photosensitizer, bacteriochlorophyll–serine (Bchl–Ser), which is water soluble, highly toxic upon illumination in the near-infrared (λmax 765–780 nm) and clears from the circulation in less than 24 h. Nude CD1 mice bearing malignant M2R melanotic melanoma xenografts (76–212 mm3) received a single complete treatment session. Massive vascular damage was already apparent 1 h after treatment. Changes in vascular permeability were observed in vivo using contrast-enhanced magnetic resonance imaging (MRI), with the contrast reagent Gd-DTPA, by shortening spin–spin relaxation time because of hemorrhage formation and by determination of vascular macromolecular leakage. Twenty-four hours after treatment a complete arrest of vascular perfusion was observed by Gd-DTPA–enhanced MRI. Histopathology performed at the same time confirmed primary vascular damage with occlusive thrombi, hemorrhage and tumor necrosis. The success rate of cure of over 80% with Bchl–Ser indicates the benefits of the short and effective treatment protocol. Combining the sensitizer administration and illumination steps into one treatment session (30 min) suggests a clear advantage for future PDT of solid tumors.
Molecular in vitro and in vivo properties of 3-devinyl-3-formylchlorin p6 (FCp6) were examined in order to characterize this derivative as a new prospective photosensitizer. The long-wavelength absorption maximum of FCp6 was 690–696 nm (depending on environment). FCp6 was found to bind readily to membranous structures and form complexes with some proteins. The dye was associated with the plasmalemma and distributed rather diffusely along the cytoplasm with ca a three-fold higher accumulation within mitochondria in A549 human adenocarcinoma cells. The spectral analysis revealed that the major part of FCp6 was bound to membranes within cells. The membrane-bound FCp6 was shown to generate singlet oxygen efficiently. The average cytoplasmic concentration of FCp6 in A549 cells achieved ca 80% of its extracellular concentration in complete medium. The dye was characterized by a very fast efflux (16-fold decrease in 2 h). The ex vivo analysis of FCp6 fluorescence in mice revealed that the maximal dye content in blood, tissues, organs and tumor was achieved in less than 1 h after injection, followed by a considerable (ca six-fold) decrease during the next 23 h and a long-term persistence at low level. A preferential accumulation of FCp6 in subcutaneously implanted Ehrlich carcinoma along with its higher retention level comparing to the surrounding skin and muscles were observed in mice treated with different dye doses. In vitro cytotoxic assays with A549 and Raji B-cell lymphoma cells as well as in vivo analyses using Ehrlich carcinoma in mice revealed the very low toxicity of FCp6 without light irradiation and the significant photodynamic activity of this compound.
A novel, compact and low-cost multispectral fluorescence imaging system with an integrated excitation light source is described. Data are presented demonstrating the application of this method to in vivo monitoring of fluorescence before, during and after topical 5-aminolevulinic acid photodynamic therapy of superficial skin cancers. The excitation source comprised a fluorescent tube with the phosphor selected to emit broadband violet light centered at 394 nm. The camera system simultaneously captured spectrally specific images of the fluorescence of the photosensitizer, protoporphyrin IX, the illumination profile and the skin autofluorescence. Real-time processing enabled images to be manipulated to create a composite image of high contrast. The application and validation of this method will allow further detailed studies of the characteristics and time-course of protoporphyrin IX fluorescence, during topical photodynamic therapy in human skin in vivo.
We have studied the photosensitizing effects of zinc(II)-phthalocyanine (ZnPc) on the cytoskeleton of HeLa cells using sublethal (10−7M, followed by 1 or 3 min of red light to induce 20%, LD20, or 60%, LD60, cell death, respectively) or lethal (5 × 10−6M and 15 min of irradiation, LD100) experimental conditions. The immunofluorescent analysis of the cytoskeleton showed a variable photodamage to microtubules (MT), actin microfilaments (AF) and intermediate filaments of keratin (KF), as well as on α-actinin, which was dependent on treatment conditions. Both sublethal treatments induced deep alterations on interphase and mitotic MT. The mitotic index increased with time with the maximum at 18 h (12%) or 24 h (14%) after LD20 or LD60, respectively. The alterations on AF and α-actinin were much more severe than those observed on KF at any evaluated time. With the exception of the KF, which remained partially organized, the MT and AF network was severely damaged by the lethal treatment. Western blot analysis for α-tubulin, G-actin and α-actinin from soluble and insoluble fractions confirmed the results observed by immunofluorescence, thus indicating that these cytoskeletal components are involved in cell damage and death by ZnPc photosensitization.
Photodynamic therapy (PDT), a cancer treatment using a photosensitizer and visible light, has been shown to induce apoptosis or necrosis. We report here that Purpurin-18 (Pu18) in combination with light induces rapid apoptotic cell death in the human leukemia cell line (HL60) at low doses and necrosis at higher concentrations. Cells treated with Pu18 and light under apoptotic conditions exhibited DNA laddering and an increase in both cellular content of subdiploid DNA and externalization of phosphatidylserine (PS), indicating DNA fragmentation and loss of membrane phospholipid asymmetry. In the absence of light activation, Pu18 at nanomolar concentrations had no detectable cytotoxic effect. Caspase-3 activity was increased even after 1 h from treatment with low doses of Pu18 and light. The PS exposure and nuclear features of apoptosis were prevented by treatment of cells before illumination with caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK). Conversely, the caspase-1 inhibitor, acetyl-Tyr-Val-Ala-Asp-aldehyde (Ac-YVAD-CHO) failed to suppress the apoptosis. No protective effect of the three caspase inhibitors was observed when the cells were exposed to necrotic concentrations of Pu18 and light. Our results show that caspase-3, but not caspase-1, is involved in the signaling of apoptotic events in PDT with Pu18-induced apoptosis of HL60 cells. Moreover, both the time course of PS exposure and the effect of caspase inhibitors on it indicate that it is regulated in the same manner as DNA fragmentation.
We report the influence of fluence rate on the photobleaching and cell survival in Colo 26 multicell spheroids photosensitized by meta-tetra-(hydroxyphenyl)chlorin (mTHPC). Photosensitizer degradation and therapeutic efficacy increased dramatically and progressively when the fluence rate was reduced over the range from 90 to 5 mW cm−2. These experimental results were compared to a mathematical model of photobleaching based on self-sensitized singlet oxygen reactions with the photosensitizer ground state. This model incorporates photophysical parameters obtained from microelectrode measurements of oxygen depletion at the surface of mTHPC-sensitized spheroids and was refined by including the inhomogeneous distribution of mTHPC in spheroids and oxygen depletion in the bulk medium. Since the model is consistent with the experimental data we conclude that the fluence rate dependence of the cell survival and of mTHPC photobleaching is due to photochemical oxygen consumption and a predominantly singlet oxygen-mediated mechanism of mTHPC photobleaching. The threshold dose of reacting singlet oxygen was calculated to be 7.9 ± 2.2 mM in this system.
We investigated the efficiency and the mechanism of action of two—one symmetrically and one asymmetrically substituted—glycoconjugated tetraphenyl porphyrins in their photoreaction with T7 phage as a model of nucleoprotein (NP) complexes. A correlation was found between the dark inactivation of T7 and the binding of porphyrins determined by fluorescence spectroscopy. Both types of porphyrin sensitized the photoinactivation of T7, but the slopes of inactivation kinetics were markedly different. There was no correlation between the dark binding and the photosensitizing efficacy of the two derivatives. Inactivation was moderated by 1,3-diphenylisobenzofuran and 1,3-dimethyl-2-thiourea; however, neither of them inhibited T7 inactivation completely. This result suggests that both Type-I and Type-II reactions play a role in the virus inactivation. Optical melting studies revealed structural changes in the protein part but not in the DNA of the photochemically treated NP complex. Polymerase chain reaction analysis of a 555 bp segment of gene 1 and a 3826 bp segment of genes 3 and 4 failed to demonstrate any DNA damage.
Understanding the regulation and control of heme/porphyrin biosynthesis is critical for the optimization of the δ-aminolevulinic-acid (ALA)–mediated photodynamic therapy of cancer, in which endogenously produced protoporphyrin IX (PPIX) is the photosensitizer. The human breast cancer cell line MCF-7, the rat mammary adenocarcinoma cell line R3230AC, the mouse mammary tumor cell line EMT-6 and the human mesothelioma cell line H-MESO-1 were used to study ALA-induced PPIX levels and their relationship to δ-aminolevulinic acid dehydratase (ALA-D) activity in vitro. Incubation of these cell lines with 0.5 mM ALA for 3 h resulted in a significant increase in PPIX accumulation, compared with control cells, but there was no significant change in ALA-D activity. Exposure of cells incubated with ALA to 30 mJ/cm2 of fluorescent light, a dose that would cause a 50% reduction in cell proliferation, did not significantly alter the activity of ALA-D. Increasing the activity of porphobilinogen deaminase (PBGD), the enzyme immediately subsequent to ALA-D, by four- to seven-fold via transfection of cells with PBGD complementary DNA did not alter the activity of ALA-D. However, incubation of cells with various concentrations of succinyl acetone, a potent inhibitor of ALA-D, caused a concomitant decline in both PPIX accumulation and ALA-D activity. These data imply that when cells are exposed to exogenous ALA, ALA-D is an important early-control step in heme/porphyrin biosynthesis and that regulation of PPIX synthesis by this dehydratase may impact the effectiveness of ALA-mediated photosensitization.
Proteases like urokinase-type plasminogen activator (uPA) play an important role in tumor invasion. Cells derived from ultraviolet radiation (UVR)-induced corneal sarcomas of Monodelphis domestica produce relatively high levels of uPA compared to the untransformed keratocytes suggesting a mechanism for their invasiveness. Because UVR is known to stimulate uPA production in many cell types, UVR exposure may further increase uPA expression in corneal tumor cells, thus enhancing their ability to infiltrate. We investigated control of basal uPA levels and the induction of uPA by UVR in transformed and untransformed corneal keratocytes from Monodelphis. These studies took advantage of the fact that Monodelphis possesses an active photolyase that can be stimulated to remove UVR-induced pyrimidine dimers by exposure to long-wavelength visible photoreactivating light (PRL). Our studies showed that significant induction of uPA occurred in response to 200 J/m2 UVR. This induction was partially blocked by treatment with PRL, indicating that DNA damage, the pyrimidine dimer in particular, played a role in uPA induction. In untransformed cultured corneal fibroblasts, the heparin-binding protein inhibitor, suramin, reduced basal uPA levels, UVR-induced uPA production and cell proliferation. Basic fibroblast growth factor, a heparin-binding growth factor known to be UVR-inducible in mesenchymal cells, stimulated uPA production and cell proliferation; however, anti-bFGF antibodies did not significantly decrease proliferation or basal uPA production. These findings suggested that basal levels of uPA secretion were modulated in response to heparin-binding growth factors and that these growth factors may also have mediated the effect of UVR on uPA levels.
A new photomorphogenesis was found in the plasmodium of the true slime mold Physarum polycephalum: the plasmodium broke temporarily into equal-sized spherical pieces, each containing about eight nuclei, about 5 h after irradiation with light. Action spectroscopic study showed that UVA, blue and far-red lights were effective, while red light inhibited the far-red–induced fragmentation. Difference absorption spectra of both the living plasmodium and the plasmodial homogenate after alternate irradiation with far-red and red light gave two extremes at 750 and 680 nm, which agreed with those for the induction and inhibition of the fragmentation, respectively. A kinetic model similar to that of phytochrome action explained quantitatively the fluence rate–response curves of the fragmentation. Our results indicate that one of the photoreceptors for the plasmodial fragmentation is a phytochrome.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere