Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The reaction of singlet oxygen with four vinyl-substituted dicarboxylic porphyrins, vinyldeuteroporphyrin (VD), ethylvinyldeuteroporphyrin (EVD), hydroxyethylvinyldeuteroporphyrin (HVD) and protoporphyrin (PP) in organic solutions is investigated. The main products, the “hydroxyaldehyde” chlorin-type derivatives, are formed with a concentration-dependent photochemical quantum yield that reaches a maximum of 7.4 ± 1.6 × 10−3. However, owing to the high turnover of singlet-oxygen production, these chlorin-type compounds are easily prepared photochemically with a chemical yield of 70% and little side product formation. In chemical ionization mass spectrometry, these compounds display an unusual fragmentation with a loss of 16 mass units. This is attributed to the loss of the oxygen bound to the saturated carbon of the modified pyrrole unit. All these compounds sensitize the formation of singlet oxygen with a yield around 0.8. They interact with singlet oxygen with rate constants of 5 × 106–9 × 106M−1 s−1, lower than those measured for vinyl porphyrins. These data are likely to help in the characterization of photoproducts of vinyl porphyrins relevant to photodynamic therapy (PP, HVD). As exemplified with VD and EVD, they also point out the reaction of singlet oxygen as an efficient route to chlorin-type photosensitizers.
The photoprocesses of two bis-benzimidazole dyes, Hoechst 33258 (1) and an analog, where the phenolic group in p-position is replaced by an ethoxy group, Hoechst 33342 (2), were studied. For 1 and 2 in aqueous solution the quantum yield of fluorescence is strongly pH dependent; it decreases from a maximum value of Φf = 0.4 at pH 5 to Φf = 0.02 at pH 8. The effects of absorption and fluorescence, induced by sodium dodecyl sulfate surfactants below and above the critical micelle concentration and by double-stranded DNA, are interpreted by assuming that in bulk aqueous solution the dyes are essentially present as monomers. The strong enhancement of Φf, when the dye is bound to double-stranded DNA or solubilized in micelles, is suggested to be due to different environments at the benzimidazole rings. A quinoid intermediate with absorption maximum at 380 nm is formed for 1 at neutral pH using λexc = 248 or 308 nm. N-centered radicals of 1 or 2 in aqueous solution were observed by laser flash photolysis after electron ejection using wavelengths of 193 or 248 nm (mono and biphotonic, respectively). The precursor radical cation escaped observation but is transformed into the above radicals by deprotonation. Electron transfer from 1 in aqueous solution to triplet acetone takes place, and subsequent deprotonation is proposed to yield N-centered radicals. In addition, energy transfer from acetone to 1 is suggested, leading to T–T absorption with the maximum at 700 nm. The photoprocesses are discussed and the results compared with those known from pulse radiolysis.
A cationic carotenoid derivative (GRP-carotenal) was synthesized by the reaction of Girard's reagent P and β-apo-8′-carotenal. The singlet-oxygen quenching constants for GRP-carotenal were 1.3 ± 0.1 × 1010 and 1.0 ± 0.1 × 1010M−1 s−1 in acetonitrile and in detergent micelles, respectively. Photosensitized damage to K562 leukemia cells from cis-di(4-sulfonatophenyl)diphenylporphine, hypericin and protoporphyrin IX was inhibited by GRP-carotenal under conditions where β-apo-8′-carotenal, β-carotene and crocetin were ineffective. The unique cytoprotective properties of GRP-carotenal, relative to the other carotenoids studied, could not be explained by the differences in the cell content of the various carotenoids or by the changes in the cell content of the photosensitizers used. Photosensitizer fluorescence from labeled K562 cells was reduced by GRP-carotenal but not by the other carotenoids studied. The novel photoprotective properties of GRP-carotenal may be due to its subcellular distribution. In photosensitizer-containing detergent micelles, novel properties of GRP-carotenal were not apparent. None of the carotenoids studied reduced photosensitizer fluorescence or singlet-oxygen generation. Singlet-oxygen quenching by GRP-carotenal and by β-apo-8′-carotenal were roughly the same. Crocetin has a singlet-oxygen quenching constant that is about a factor of five lower. Singlet-oxygen quenching by β-carotene was limited by its aggregation.
A careful study of the linoleic acid hydroperoxide (LOOH) profile obtained upon peroxidation of linoleic acid (LA) photosensitized by tiaprofenic acid (TPA) and analogous ketones has been undertaken to distinguish between type-I and type-II photoperoxidation mechanisms. 1,4-Cyclohexadiene and 1,2-dimethylcyclohexa-2,5-dienecarboxylic acid (CHDCA) have also been used as models for LA since they also have double allylic systems. Coirradiation of LA with TPA and decarboxytiaprofenic acid (DTPA) in acetonitrile and micellar media produced significant amounts of conjugated dienic LOOH. The cis,trans to trans,trans ratio depended on the irradiation time; thus, this parameter is an ambiguous tool for mechanistic assignment. An interesting finding was the decrease of the LOOH level after long irradiation times in mixtures photooxidized by DTPA, which is attributed to quenching of the DTPA triplet by the generated dienic LOOH. High-performance liquid chromatography analyses confirmed that the main pathway operating in photodynamic lipid peroxidation sensitized by (D)TPA is a type-I mechanism. However, product studies using CHDCA have clearly shown that a type-II mechanism is also operating and might contribute to the overall photooxidation process in a significant way.
UV radiation measured on normal-to-the-sun-oriented surfaces can show significantly higher global UV irradiance values compared to measurements on horizontal receivers. The direct component is amplified by the inverse cosine of the zenith angle, but over surfaces with high local albedo this accounts for only about half of the signal rise of global irradiance. The signal rise of the diffuse component, however, is strongly related to local albedo and solar elevation, which is demonstrated by 2 years of measurements of direct, diffuse, global, reflected and global normal-to-the-sun erythemal effective UV irradiance (UVery). Global UVery signal rises, on normal-to-the-sun-oriented versus horizontal receivers, of up to 65% were measured on fresh snow and solar elevation angles below 30°. An empirical expression has been deduced from the measurements relating the ratio of normal-to-the-sun versus horizontal measurements of global UVery to surface albedo and solar elevation. This allows one to calculate the maximum global UVery irradiance levels which are to be expected on normal-to-the-sun-oriented surfaces with respect to horizontal measurements or model calculations.
The effects of vitamin E supplementation were evaluated in cultured human normal fibroblasts exposed to ultraviolet A radiation (320–380 nm) (UVA). Cells were incubated in medium containing α-tocopherol, α-tocopherol acetate or the synthetic analog Trolox for 24 h prior to UVA exposure. DNA damage in the form of frank breaks and alkali-labile sites, collectively termed single-strand breaks (SSB), was assayed by the technique of single cell gel electrophoresis (comet assay), immediately following irradiation or after different repair periods. The generation of hydrogen peroxide (H2O2) and superoxide ion (O2·−) was measured by flow cytometry through the oxidation of indicators into fluorescent dyes. It was observed that pretreatment of cells with any form of vitamin E resulted in an increased susceptibility to the photoinduction of DNA SSB and in a longer persistence of damage, whereas no significant change was observed in the production of H2O2 and O2·− reactive oxygen species, compared to untreated controls. These findings indicate that in human normal fibroblasts, exogenously added vitamin E exerts a promoting activity on DNA damage upon UVA irradiation and might lead to increased cytotoxic and mutagenic risks.
Confluent layers of MDCK II cells were treated with four different photosensitizers (a purified version of hematoporphyrin derivative [Photofrin], tetra(3-hydroxyphenyl)porphine [3-THPP], meso-tetra(4-sulphonatophenyl)porphine [TPPS4] and ALA-induced Protoporphyrin IX) and irradiated with blue light, with UVA without exogenous photosensitizers, or incubated with the metabolic inhibitors carbonyl cyanide m-chlorophenylhydrazone and 2-deoxy-d-glucose. Necrotic and apoptotic cells were detected about 4 h later by fluorescence microscopy. Dead cells appeared in distinct clusters in the confluent layers. The number of dead cells in these clusters was determined by manual counting and image analysis. Forty-one of the 43 experimental distributions of dead cells in clusters were found to be significantly different from a Monte Carlo simulation of the distribution of independently inactivated cells. However, a Monte Carlo simulation model, assuming that each dead cell increased the probability of inactivation of adjacent cells, fitted 34 of the 43 observed distributions of dead cells in clusters, indicating a significant bystander effect for all the investigated treatments. The bystander-effect model parameter, defined as a cell's increase in probability of dying when it has dead neighbors, was significantly lower for 3-THPP-PDT and TPPS4-PDT than for Photofrin-PDT, ALA-PDT and treatment with metabolic inhibitors.
Many potentially therapeutic macromolecules, e.g. transgenes used in gene therapy, are taken into the cells by endocytosis, and have to be liberated from endocytic vesicles in order to express a therapeutic function. To achieve this we have developed a new technology, named photochemical internalization (PCI), based on photochemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which properties of photosensitizers are important for obtaining the PCI effect improving gene transfection. The photochemical effect on transfection of human melanoma THX cells has been studied employing photosensitizers with different physicochemical properties and using two gene delivery vectors: the cationic polypeptide polylysine and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Photochemical treatment by photosensitizers that do not localize in endocytic vesicles (tetra[3-hydroxyphenyl]porphyrin and 5-aminolevulinic acid–induced protoporphyrin IX) do not stimulate transfection, irrespective of the gene delivery vector. In contrast, photosensitizers localized in endocytic vesicles stimulate polylysine-mediated transfection, and amphiphilic photosensitizers (disulfonated aluminium phthalocyanine [AlPcS2a] and meso-tetraphenylporphynes) show the strongest positive effect, inducing approximately 10-fold increase in transfection efficiency. In contrast, DOTAP-mediated transfection is inhibited by all photochemical treatments irrespective of the photosensitizer used. Neither AlPcS2a nor Photofrin affects the uptake of the transfecting DNA over the plasma membrane, therefore photochemical permeabilization of endocytic vesicles seems to be the most likely mechanism responsible for the positive PCI effect on gene transfection.
The applicability of optical spectroscopy for intraoperative detection of brain tumors/tumor margins was investigated in a pilot clinical trial consisting of 26 brain tumor patients. The results of this clinical trial suggest that brain tumors and infiltrating tumor margins (ITM) can be effectively separated from normal brain tissues in vivo using combined autofluorescence and diffuse-reflectance spectroscopy. A two-step empirical discrimination algorithm based on autofluorescence and diffuse reflectance at 460 and 625 nm was developed. This algorithm yields a sensitivity and specificity of 100 and 76%, respectively, in differentiating ITM from normal brain tissues. Blood contamination was found to be a major obstacle that attenuates the accuracy of brain tumor demarcation using optical spectroscopy. Overall, this study indicates that optical spectroscopy has the potential to guide brain tumor resection intraoperatively with high sensitivity.
Subcutaneous mouse EMT6 tumors were treated by individual or combined regimens of a single Bacillus Calmette–Guérin (BCG) vaccine administration and photodynamic therapy (PDT). Six clinically relevant photosensitizers characterized by different action mechanisms were used: Photofrin, benzoporphyrin derivative, tetra(m-hydroxyphenyl)chlorin (foscan), mono-l-aspartyl-chlorin e6, lutetium texaphyrin or zinc phthalocyanine. Irrespective of the type of photosensitizer used, the optimized BCG protocols improved the cure rate of PDT-treated tumors. This indicates that the interaction does not take place during the early phase of tumor ablation but at later events involved in preventing tumor recurrence. Beneficial effects on tumor cure were observed even when the BCG injection was delayed to 7 days after PDT. The accumulation of activated myeloid cells that markedly increases in tumors treated by Photofrin-based PDT was not additionally affected by BCG treatment. However, the incidence of immune memory T cells in tumor-draining lymph nodes that almost doubled at 6 days after Photofrin-PDT further increased close to three-fold with adjuvant BCG. This suggests that BCG immunotherapy amplifies the T-lymphocyte–mediated immune response against PDT-treated tumors. Since both these modalities are established for the treatment of superficial bladder carcinomas, use of their combination for this condition should be clinically tested.
Effective photodynamic therapy (PDT) depends on the optimization of factors such as drug dose, drug–light interval, fluence rate and total light dose (or fluence). In addition sufficient oxygen has to be present for the photochemical reaction to occur. Oxygen deficits may arise during PDT if the photochemical reaction consumes oxygen more rapidly than it can be replenished, and this could limit the efficacy of PDT. In this study we investigated the influence of the drug–light interval, illumination-fluence rate and total fluence on PDT efficacy for the photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). The effect of increasing the oxygenation status of tumors during PDT was also investigated. PDT response was assessed from tumor-growth delay and from cures for human malignant mesothelioma xenografts grown in nude mice. Tumor-bearing mice were injected intravenously with 0.15 or 0.3 mg·kg−1mTHPC, and after intervals of 24–120 h, the subcutaneous tumors were illuminated with laser light (652 nm) at fluence rates of 20, 100 or 200 mW·cm−2. Tumor response was strongly dependent on the drug–light interval. Illumination at 24 h after photosensitization was always significantly more effective than illumination at 72 or 120 h. For a drug–light interval of 24 h the tumor response increased with total fluence, but for longer drug–light intervals even high total fluences failed to produce a significant delay in tumor regrowth. No fluence-rate dependence of PDT response was demonstrated in these studies. Nicotinamide injection and carbogen breathing significantly increased tumor oxygenation and increased the tumor response for PDT schedules with illumination at 24 h after photosensitizer injection.
The purpose of the present study was to gain new insight regarding the role membrane permeabilization plays in the photosensitization-induced increase in intracellular calcium concentration. During continuous rose bengal photosensitization we monitored the contractile state (relaxed or hypercontracted) of isolated frog cardiac cells and assessed the photosensitization-induced membrane-leak conductance. We investigated the effects of irradiance, extracellular calcium concentration, intracellular chelation of calcium and substitution of tetraethylammonium (TEA) for extracellular sodium. We found that with 2 and 5 mM extracellular calcium cell hypercontracture occurred when leak conductance reached values on the order of 6–7 nS, independent of the illumination duration required to reach this conductance. With 0.5 mM calcium hypercontracture occurred when leak conductance reached values on the order of 11 nS. Chelation of intracellular calcium delayed the onset of cell hypercontracture and increased by two- to three-fold the leak conductance at the initiation of cell hypercontracture. Substitution of TEA for extracellular sodium did not affect the time to contracture onset but reduced leak conductance at contracture onset nearly three-fold. We discuss how our results support the conclusion that photosensitization induces an increase in intracellular calcium concentration via calcium influx through the transmembrane-permeability pathway opened by the photosensitization process.
UVB irradiation depletes all-trans-retinol (ROL) and all-trans-retinyl esters (RE) from the hairless mouse epidermis. Prevention of this may be of relevance in counteracting the long-term side effects of UVB exposure. We studied the effects of a topical treatment with natural retinoids before and after UVB exposure on three parameters involved in vitamin A metabolism: the amount of epidermal ROL and RE, the level of functional cellular retinol-binding protein I (CRBP-I), which is likely to protect ROL from UVB, as well as the cytosolic and microsomal enzyme activities which generate ROL and RE, i.e. all-trans-retinaldehyde (RAL) reductase, acylCoA:retinol acyltransferase (ARAT) and retinyl-ester hydrolase (REH). Topical pretreatment with retinoids promoted a dramatic increase of epidermal ROL, RE and CRBP-I levels, a transient increase of RAL reductase and ARAT activities as well as a decreased activity of REH, indicating a direction of epidermal vitamin A metabolism toward storage. In untreated mice UVB irradiation induced a depletion of epidermal ROL and RE in 10 min and a 50% decrease of CRBP-I after 24 h. In mice treated with topical retinoids, and then exposed to UVB, epidermal RE levels were higher than in vehicle-treated, nonirradiated mice. In contrast, ROL was as much depleted after UVB in pretreated as in untreated animals in spite of an induction of CRBP-I, indicating that CRBP-I does not actually protect ROL from UVB-induced depletion in this model. However, the reconstitution of both epidermal ROL and RE, after their depletion induced by UVB, was accelerated by previous topical treatment with RAL. Our results indicate that topical delivery of retinoids partly counteracts UVB-induced vitamin A depletion and promotes recovery.
Ultraviolet radiation can inhibit immune responses locally as well as systemically. Such effects have been measured in animals and humans exposed to ultraviolet B (wavelength 280–315 nm) (UVB) and ultraviolet A (315–400 nm) (UVA). The precise wavelength dependence is important for the identification of possible molecular targets and for assessments of risk of different artificial UV sources and solar UV. In such analyses, it is commonly assumed that radiation energy from each wavelength contributes to the effect independent of the other wavelengths. Here we show that this assumption does not hold good. In the present study, it was investigated whether exposure to broadband UVA or longwave ultraviolet A 1 (340–400 nm) (UVA 1) prior to the standard immunosuppressive UVB protocol might modulate the immunosuppressive effects induced by UVB. Preexposure to broadband UVA or longwave UVA 1, 1 day prior to the standard immunosuppressive UVB protocol, inhibited the UVB-induced suppression of delayed type hypersensitivity (DTH) to Listeria monocytogenes significantly. This effect was not associated with restoring the number of interleukin (IL-12)–positive cells in the spleen. Since isomerization of trans-urocanic acid (UCA) into the immunosuppressive cis-UCA isomer plays a crucial role in UVB-induced immunomodulation, in a second set of experiments it was investigated whether immunosuppression induced by cis-UCA might also be downregulated by preexposure to UVA. Animals were exposed to broadband UVA or longwave UVA 1 prior to application of an immunosuppressive dose of cis- or trans-UCA as a control. Both UVA and UVA 1 appear to inhibit the cis-UCA–induced systemic immunosuppression (DTH and IL-12) to L. monocytogenes. These studies clearly show that UVA radiation modulates both UVB and cis-UCA–induced immunomodulation. In general, our studies indicate that both broadband UVA and longwave UVA 1 could induce modulation of UVB and cis-UCA–induced immunomodulation. As sunlight contains both UVA and UVB radiation the balance between these two radiations apparently determines the net immunomodulatory effect.
Alloxanthine-inhibited xanthine oxidase (XOD) was found to be photoreactivated by irradiation of light of wavelengths in the range of 340–430 nm. The enzyme activity can be fully controlled to be on or off by many dark–light cycles. Electron spin resonance measurement shows the appearance of the molybdenum (V) ion and the reduced form of flavin adenine dinucleotide (FADH·) radical signals after irradiation of the alloxanthine–XOD complex. Electronic-absorption spectrum also shows the bleaching of Fe/S and flavin adenine dinucleotide chromophores at 375 and 450 nm as well as broad-band absorption of FADH· in the range of 500–700 nm. The quantum yield of photoreactivation of the enzyme activity is ∼0.06. A photoinduced intraenzyme electron-transfer model is proposed to rationalize the photoreactivation process.
In the Archean era (3.8–2.5 Ga ago) the Earth probably lacked a protective ozone column. Using data obtained in the Earth's orbit on the inactivation of Bacillus subtilis spores we quantitatively estimate the potential biological effects of such an environment. We combine this practical data with theoretical calculations to propose a history of the potential UV stress on the surface of the Earth over time. The data suggest that an effective ozone column was established at a pO2 of ∼5 × 10−3 present atmospheric level. The improvement in the UV environment on the early Proterozoic Earth might have been a much more rapid event than has previously been supposed, with DNA damage rates dropping by two orders of magnitude in the space of just a few tens of millions of years. We postulate that a coupling between reduced UV stress and increased pO2 production could have contributed toward a positive feedback in the production of ozone in the early Proterozoic atmosphere. This would contribute to the apparent rapidity of the oxidation event. The data provide an evolutionary perspective on present-day Antarctic ozone depletion.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere