Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The potential role of ultraviolet-B (UV-B)–induced secondary plant metabolites as mediators of multiple trophic responses in terrestrial ecosystems is considered through review of the major classes of secondary metabolites, the pathways for their biosynthesis, interactions with primary and secondary consumers and known UV effects on their induction. Gross effects of UV-B radiation on plant growth and survival under realistic spectral balances in the field have been generally lacking, but subtle changes in carbon allocation and partitioning induced by UV-B, in particular production of secondary metabolites, can affect ecosystem-level processes. Secondary metabolites are important in plant–herbivore interactions and may affect pathogens. They act as feeding or oviposition deterrents to generalists and nonadapted specialists, but adapted specialists are stimulated to feed by these same compounds, which they detoxify and often sequester for use against their predators. This provides a route for tritrophic effects of enhanced UV-B radiation whereby herbivory may be increased while predation on the herbivore is simultaneously reduced. It is in this context that secondary metabolites may manifest their most important role. They can be the demonstrable mechanism establishing cause and effect at higher trophic levels because the consequences of their induction can be established at all trophic levels.
Action spectra are typically used as biological spectral weighting functions (BSWF) in biological research on the stratospheric ozone depletion issue. Despite their critical role in determining the amount of UV supplied in experiments, there has been only limited testing of different functions under realistic field conditions. Here, we calculate effective radiation according to five published BSWF and evaluate the appropriateness of these BSWF in representing the induction of UV-absorbing compounds. Experiments were carried out in the field using both ultraviolet-B radiation (280–320 nm) supplementation and selective filtering of solar UV radiation. For the four species tested, BSWF that extend into the ultraviolet-A radiation (320–400 nm) (UV-A) with moderate effectiveness best represented the observed results. When compared with the commonly used generalized plant response, these BSWF suggest that simulations of ozone depletion will require more radiation than in the past experiments. However, they imply lower radiation supplements than a new plant growth BSWF that has a greater emphasis on UV-A wavelengths.
Levels of UV were manipulated in a native shortgrass steppe using open-sided structures with tops that either passed or blocked wavelengths shorter than ∼370 nm. Precipitation was controlled to create a drought or a very wet year. Subplots were either nondefoliated or defoliated to simulate grazing by livestock, which is the primary land use. Plant community productivity and forage quality were assessed in response to the two climate change variables (UV, precipitation) and grazing stress. Productivity and seasonal standing biomass of the dominant grass species were negatively affected by passing versus blocking UV, but only in the dry year. Another species was negatively affected by passing UV in the wet year, indicating the potential for future shifts in species composition. Forage quality for ruminants increased when UV was passed compared with blocked, as determined by in vitro digestible dry matter, depending on species and precipitation. Nitrogen concentrations and soluble and fiber components of vegetation also displayed some UV effects, but they were generally small and depended on species, season or amount of precipitation (or all). Grazing treatment had large positive effects on current-year productivity only in the wet year and some small positive effects on quality in both wet and dry years. Interactions between UV and grazing treatment were not observed.
Polysulphone dosimeters using a simple to use filter have been developed and tested to provide an extended dynamic measurement range of personal solar UV exposures over an extended period (3 to 6 days). At a Southern Hemisphere subtropical site (27.6°S, 151.9°E), the dynamic range of the filtered polysulphone allowed measurements of erythemal exposures to approximately 100 minimum erythemal dose (MED) for a change in optical absorbance at 330 nm (ΔA330) of 0.35. In comparison, unfiltered polysulphone dosimeters were exposed to approximately 8 MED for the same ΔA330. The error associated with the use of the filtered polysulphone dosimeters is of the order of ±15%, compared with ±10% of the unfiltered variety. The developed filtered polysulphone dosimeter system allowed the measurement of erythemal UV exposures over 3 to 6 days at a subtropical site without the need to replace the dosimeters because of saturation. The results show that longer-term measurement programs of personal solar UV have been made more feasible with the use of these polysulphone dosimeters with an extended dynamic range compared with unfiltered polysulphone dosimeters.
Current conditions of 2–11 kJ m−2 day−1 of UV-B radiation and temperatures of >30°C during flowering in cotton cultivated regions are projected to increase in the future. A controlled environment study was conducted in sunlit growth chambers to determine the effects of UV-B radiation and temperature on physiology, growth, development and leaf hyperspectral reflectance of cotton. Plants were grown in the growth chambers at three day/night temperatures (24/16°C, 30/22°C and 36/28°C) and three levels of UV-B radiation (0, 7 and 14 kJ m−2 day−1) at each temperature from emergence to 79 days under optimum nutrient and water conditions. Increases in main stem node number and the node of first fruiting branch and decrease in duration to first flower bud (square) and flower were recorded with increase in temperature. Main effects of temperature and UV-B radiation were significant for net photosynthetic rates, stomatal conductance, total chlorophyll and carotenoid concentrations of uppermost, fully expanded leaves during squaring and flowering. A significant interaction between temperature and UV-B radiation was detected for total biomass and its components. The UV-B radiation of 7 kJ m−2 day−1 reduced boll yield by 68% and 97% at 30/22°C and 36/28°C, respectively, compared with yield at 0 kJ m−2 day−1 and 30/22°C. No bolls were produced in the three temperature treatments under 14 kJ m−2 day−1 UV-B radiation. The first-order interactions between temperature, UV-B radiation and leaf age were significant for leaf reflectance. This study suggests a growth- and process-related temperature dependence of sensitivity to UV-B radiation.
The sensitized photooxidation promoted by daylight-absorbing compounds appears as a plausible course to produce the photodegradation of catecholamines. We report the kinetics and mechanism of vitamin B2 (riboflavin [Rf])–sensitized photooxidation of isoproterenol (Iso), a synthetic sympathomimetic drug structurally related to epinephrine, using water as a solvent. A weak dark complex Rf–Iso is formed, only detectable at relatively high Iso concentrations (>10 mM), with a mean value of 13 ± 3 M−1 for the apparent association constant. Under aerobic sensitizing conditions (Rf ∼ 0.02 mM and Iso ∼ 0.5 mM) two oxidative mechanisms operate, mediated by singlet molecular oxygen (O2(1Δg)) and superoxide radical anion (O2·−). Our analysis shows that the main reaction pathway is an electron transfer–mediated quenching of Rf excited triplet state (3Rf*) by Iso. It produces the species Iso· and Rf·−. The latter, in a subsequent reaction path, generates O2·−, which is mainly responsible for Iso photooxygenation. In a less-important process, energy transfer of the 3Rf* to dissolved oxygen generates O2(1Δg). The kinetic balance between chemical and physical quenching of O2(1Δg) by Iso indicates that the process is largely dominated by the physical, not chemical, interaction. The results, which can be extrapolated to an in vivo condition, show the susceptibility of Iso to undergo visible light–induced photodegradation in the presence of dye sensitizers present in the environment.
Ultraviolet B (UV-B) radiation is a modality widely used for the treatment of different skin diseases. One of the major mechanisms of UV-B immunosuppression in this treatment modality is thought to be an apoptosis-inducing effect on T cells infiltrating the skin. We examined the T-cell apoptosis-induction capacities of four different UV light sources, with and without UV filters. The xenon chloride (XeCl) laser proved to be the strongest apoptosis inducer. The use of a phtalic acid filter eliminated UV radiation almost completely below 300 nm, which resulted in a severe decrease in the apoptosis-inducing capacity of different UV-B sources. Using the results of the measurements with polychromatic UV light sources, the wavelength dependence of UV-B light for the induction of T-cell apoptosis was also determined. The regression line of the action spectrum demonstrated a continuous decrease from 290 to 311 nm. The apoptosis-inducing capacity of the XeCl laser was almost four times higher than the calculated value according to the action spectrum, which might be attributed to the high irradiance of the laser as compared with nonlaser light sources.
Understanding a protein's dielectric response requires both a theoretical model and a well-defined experimental system. The former has already been proposed by Song (J. Chem. Phys. 116, 9359 [2002]). We suggest that the latter is provided by the complex of coumarin 153 (C153) with apomyoglobin (ApoMb). C153 has been exhaustively studied and has proven to be an excellent probe of the solvation dynamics of polar solvents. Myoglobin is one of the most thoroughly studied proteins. Myoglobins from a wide range of species have been subject to X-ray structural analysis and site-directed mutagenesis. Here, we demonstrate the existence of a robust C153–apomyglobin system by means of molecular dynamics simulations, equilibrium binding studies using a Job's plot and capillary electrophoresis, circular dichroism and time-resolved fluorescence. The reorganization energy of C153 bound to ApoMb is compared with that of C153 in bulk solvent using the method of Jordanides et al. (J. Phys. Chem. B 103, 7995 [1999]).
Selected hybridization in the fish genus Xiphophorus has been used for many years to study the genetics of malignant melanoma. Because DNA damage caused by ultraviolet radiation is implicated in the etiology of sunlight-induced melanoma, the heritability of mechanisms that mitigate DNA damage is a matter of some interest. We examined nucleotide excision repair of the two major types of DNA-damage induced by sunlight; the cyclobutane pyrimidine dimer (CPD) and the pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. In most cases, removal of the (6-4)PD was more rapid than the CPD, and in many cases, the F1 hybrid showed reduced repair efficiency compared with the parental species. These data demonstrate reduced function in multienzyme hybrid systems and provide molecular support for potential reduced fitness in hybrid fish under conditions of environmental stress.
The use of near-infrared (NIR)–excited Fourier-transform (FT) Raman spectroscopy as a technique for evaluating the extent of photosensitizer localization in tumor (human pancreatic adenocarcinomas)–bearing mice has been tested using lutetium(III) texaphyrin analogue Lu-T2B2Tex. The complex was injected subcutaneously in the form of three injections given during the course of 3 days. The kinetics of biodistribution were then followed over a time scale of 1–6 days. The NIR-FT-Raman spectra of tissue samples obtained from the xenographic tumor, muscle, heart, brain, liver, spleen, kidney and blood were recorded and used to identify the presence of Lu-T2B2Tex in these tissues. Five Raman sensitizer markers were used to estimate the relative content of Lu-T2B2Tex in tumor at various postinjection times. UV–Visible (Vis) absorption spectroscopic detection of this sensitizer in tissue extracts was applied as a conventional method. Both spectroscopic methods were in good agreement with each other and confirm that Lu-T2B2Tex localizes well in tumor tissue. Maximal drug content was observed 3 days after the final injection. This time delay seems to be optimal for tumor irradiation in photodynamic therapy.
Allele-specific polymerase chain reaction is based on polymerase extension from primers that contain a 3′ end base that is complementary to a specific mutation and inhibition of extension with wild-type DNA due to a 3′ end mismatch. Taq polymerase is commonly used for this assay, but because of the high rate of nucleotide extension from primer 3′ base mismatches documented for Taq polymerase, high sensitivity is difficult to achieve. To determine whether other polymerases might improve assay sensitivity, 15 polymerases were tested with mutation-specific primers for two ultraviolet-induced mutations in the human 5S ribosomal RNA genes. Of the 15 polymerases tested, six were capable of discriminating these mutations at levels equivalent to or better than Taq polymerase. All primers were phosphorothioate modified on the 3′ end to block removal of the critical 3′ mutation-specific base by polymerases containing 3′ → 5′ exonuclease “proofreading” activity. The effectiveness of phosphorothioate modification was measured in mock polymerase chain reaction reactions and a time course. All six enzymes containing this exonuclease activity showed some ability to digest phosphorothioate-modified primers and could be divided into two groups, showing fast and slow digestion kinetics. Of the three enzymes that showed slow digestion kinetics, two also showed significantly slower digestion kinetics of unmodified primers.
Throughout the lifetime of an individual, light is focused onto the retina. The resulting photooxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration (AMD), the leading cause of legal blindness in the developed world, involves oxidative stress and death of the retinal pigment epithelium (RPE) followed by death of the overlying photoreceptors. Evidence suggests that damage due to exposure to light plays a role in AMD and other age-related eye diseases. In this work a system for light-induced damage and death of the RPE, based on the human ARPE-19 cell line, was used. Induction of mitochondria-derived reactive oxygen species (ROS) is shown to play a critical role in the death of cells exposed to short-wavelength blue light (425 ± 20 nm). ROS and cell death are blocked either by inhibiting the mitochondrial electron transport chain or by mitochondria-specific antioxidants. These results show that mitochondria are an important source of toxic oxygen radicals in blue light–exposed RPE cells and may indicate new approaches for treating AMD using mitochondria-targeted antioxidants.
We investigate the role of protein environment of rhodopsin and the intramolecular interaction of the chromophore in the cis–trans photoisomerization of rhodopsin by means of a newly developed theoretical method. We theoretically produce modified rhodopsins in which a force field of arbitrarily chosen part of the chromophore or the binding pocket of rhodopsin is altered. We compare the equilibrium conformation of the chromophore and the energy stored in the chromophore of modified rhodopsins with those of native rhodopsins. This method is called site-specific force field switch (SFS). We show that this method is most successfully applied to the torsion potential of rhodopsin. Namely, by reducing the twisting force constant of the C11=C12 of 11-cis retinal chromophore of rhodopsin to zero, we found that the equilibrium value of the twisting angle of the C11=C12 bond is twisted in the negative direction down to about −80°. The relaxation energy obtained by this change amounts to an order of 10 kcal/mol. In the case that the twisting force constant of the other double bond is reduced to zero, no such large twisting of the bond happens. From these results we conclude that a certain torsion potential is applied specifically to the C11=C12 bond of the chromophore in the ground state of rhodopsin. This torsion potential facilitates the bond-specific cis–trans photoisomerization of rhodopsin. This kind of the mechanism is consistent with our torsion model proposed by us more than a quarter of century ago. The origin of the torsion potential is analyzed in detail on the basis of the chromophore structure and protein conformation, by applying the SFS method extensively.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere