BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
C. E. Land, Z. Zhumadilov, B. I. Gusev, M. H. Hartshorne, P. W. Wiest, P. W. Woodward, L. A. Crooks, N. K. Luckyanov, C. M. Fillmore, Z. Carr, G. Abisheva, H. L. Beck, A. Bouville, J. Langer, R. Weinstock, K. I. Gordeev, S. Shinkarev, S. L. Simon
Land, C. E., Zhumadilov, Z., Gusev, B. I., Hartshorne, M. H., Wiest, P. W., Woodward, P. W., Crooks, L. A., Luckyanov, N. K., Fillmore, C. M., Carr, Z., Abisheva, G., Beck, H. L., Bouville, A., Langer, J., Weinstock, R., Gordeev, K. I., Shinkarev, S. M. and Simon, S. L. Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout. Radiat. Res. 169, 373–383 (2008).
Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings.
Wambi, C., Sanzari, J., Wan, X. S., Nuth, M., Davis, J., Ko, Y. H., Sayers, C. M., Baran, M., Ware, J. H. and Kennedy, A. R. Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation. Radiat. Res. 169, 384–396 (2008).
The purpose of this study was to determine whether a dietary supplement consisting of l-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants.
Veličković, N., Djordjević, A., Matić, G. and Horvat, A. Radiation-Induced Hyposuppression of the Hypothalamic-Pituitary-Adrenal Axis is Associated with Alterations of Hippocampal Corticosteroid Receptor Expression. Radiat. Res. 169, 397–407 (2008).
Therapeutic brain irradiation in children can cause a progressive decline in cognitive functions through a diminished capability to learn and memorize. Because of the known involvement of the hippocampus in memory consolidation, this study was aimed at examining the late effects of γ radiation on hypothalamic-pituitary-adrenal (HPA) axis activity and hippocampal corticosteroid receptor expression in an animal model of cranial radiotherapy. In the late-response phase, the basal and stress-induced corticosterone levels were not affected by radiation, but the suppression of glucocorticoid negative feedback by dexamethasone was attenuated in irradiated rats. Western blot analyses showed that exposure to radiation led to a decrease of cytosolic glucocorticoid receptor (GR) levels and a concomitant elevation of mineralocorticoid receptor (MR). The results obtained were complemented by those of RT-PCR, since the ratio of GR/MR mRNA was also decreased after radiation exposure. Dexamethasone appeared to be much less effective in shifting GR to the nuclear compartment in irradiated rats than in sham-irradiated animals. However, the expression of chaperones that aid GR intracellular trafficking, Hsp90 and Hsp70, remained unaffected. In conclusion, our data suggest that the hallmark of the late response to γ radiation is a hyposuppressive state of the HPA axis that is associated with a decrease in both the GR/MR ratio and the nuclear accumulation of dexamethasone-activated GR in the hippocampus.
Ross, C. C., MacLeod, S. L., Plaxco, J. R., Froude, J. W., Fink, L. M., Wang, J., Stites, W. E. and Hauer-Jensen, M. Inactivation of Thrombomodulin by Ionizing Radiation in a Cell-Free System: Possible Implications for the Radiation Responses in Vascular Endothelium. Radiat. Res. 169, 408–416 (2008).
Normal tissue radiation injury is associated with loss of vascular thromboresistance, notably because of deficient levels of endothelial thrombomodulin (TM). TM is located on the luminal surface of most endothelial cells and has critical anticoagulant and anti-inflammatory functions. Chemical oxidation of a specific methionine residue (Met388) at the thrombin-binding site in TM reduces its main functional activity, i.e., the ability to activate protein C. We examined whether exposure to ionizing radiation affects TM in a similar manner. Full-length recombinant human TM, a construct of epidermal growth factor-like domains 4–6, which are involved in protein C activation, and a synthetic peptide containing the methionine of interest were exposed to γ radiation in a cell-free system, i.e., a system not confounded by TM turnover or ectodomain shedding. The influence of radiation on functional activity was assessed with the protein C activation assay; formation of a TM-thrombin complex was assessed with surface plasmon resonance (Biacore), and oxidation of Met388 was assessed by HPLC and confirmed by mass spectroscopy. Exposure to radiation caused a dose-dependent reduction in protein C activation, impaired TM-thrombin complex formation, and oxidation of Met388. These results demonstrate that ionizing radiation adversely affects the TM molecule. Our findings may have relevance to normal tissue toxicity in clinical radiation therapy as well as to the development of radiation syndromes in the non-therapeutic radiation exposure setting.
Ao, X., Lubman, D. M., Davis, M. A., Xing, X., Kong, F;chM., Lawrence, T. S. and Zhang, M. Comparative Proteomic Analysis of Radiation-Induced Changes in Mouse Lung: Fibrosis-Sensitive and -Resistant Strains. Radiat. Res. 169, 417–425 (2008).
To determine whether comparative proteomics could detect differential protein expression after lung irradiation in two mouse strains with different radiation responses, lung proteins were subjected to two-dimensional orthogonal liquid-phase separations, with chromatofocusing in the first dimension and nonporous silica reverse-phase high-performance liquid chromatography (NPS-RP-HPLC) in the second. Five weeks after 12 Gy whole-lung irradiation, 15 and 31 proteins had significantly altered expression levels in C3H/HeJ (less likely to develop lung fibrosis) and C57BL/6J mice (more likely to develop lung fibrosis), respectively. These proteins were analyzed by HPLC-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and identified by matching sequences in a peptide database. The proteins are associated with redox, energy consumption, glycolysis, or chromatin/ RNA structure formation. Five of the six redox-related proteins, including superoxide dismutase 1 (SOD1), cytochrome c oxidase, glutamate dehydrogenase, biliverdin reductase, peroxiredoxin and carbonyl reductase, were down-regulated in the irradiated C57BL/6J mice, whereas SOD1, sulfurtransferase and carbonyl reductase increased in the irradiated C3H/ HeJ mice. Thus decreased antioxidant proteins in the irradiated C57BL/6J mice may be correlated with increased early lung toxicity. Changes in SOD1 and 8-hydroxydeoxy-guanosine (8-OHdG, an oxidative stress marker) were further confirmed by immunohistochemistry and/or Western blot analysis. These data suggest that a proteomics approach has the potential to detect protein changes relevant to early lung toxicity after irradiation.
Takabatake, T., Kakinuma, S., Hirouchi, T., Nakamura, M. M., Fujikawa, K., Nishimura, M., Oghiso, Y., Shimada, Y. and Tanaka, K. Analysis of Changes in DNA Copy Number in Radiation-Induced Thymic Lymphomas of Susceptible C57BL/6, Resistant C3H and Hybrid F1 Mice. Radiat. Res. 169, 426–435 (2008).
Radiation-induced thymic lymphoma in mice is a useful model for studying both the mechanism of radiation carcinogenesis and genetic susceptibility to tumor development. Using array-comparative genomic hybridization, we analyzed genome-wide changes in DNA copy numbers in radiation-induced thymic lymphomas that had developed in susceptible C57BL/6 and resistant C3H mice and their hybrids, C3B6F1 and B6C3F1 mice. Besides aberrations at known relevant genetic loci including Ikaros and Bcl11b and trisomy of chromosome 15, we identified strain-associated genomic imbalances on chromosomes 5, 10 and 16 and strain-unassociated trisomy of chromosome 14 as frequent aberrations. In addition, biallelic rearrangements at Tcrb were detected more frequently in tumors from C57BL/6 mice than in those from C3H mice, suggesting aberrant V(D)J recombination and a possible link with tumor susceptibility. The frequency and spectrum of these copy-number changes in lymphomas from C3B6F1 and B6C3F1 mice were similar to those in C57BL/6 mice. Furthermore, the loss of heterozygosity analyses of tumors in F1 mice indicated that allelic losses at Ikaros and Bcl11b were caused primarily by multilocus deletions, whereas those at the Cdkn2a/Cdkn2b and Pten loci were due mainly to uniparental disomy. These findings provide important clues to both the mechanisms for accumulation of aberrations during radiation-induced lymphomagenesis and the different susceptibilities of C57BL/6 and C3H mice.
Asaithamby, A., Uematsu, N., Chatterjee, A., Story, M. D., Burma, S. and Chen, D. J. Repair of HZE-Particle-Induced DNA Double-Strand Breaks in Normal Human Fibroblasts. Radiat. Res. 169, 437–446 (2008).
DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and γ rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using γ-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and γ radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with γ-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of γ-H2AX. Spatial co-localization analysis showed that unlike γ-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and γ rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles.
Carlson, D. J., Stewart, R. D., Semenenko, V. A. and Sandison, G. A. Combined Use of Monte Carlo DNA Damage Simulations and Deterministic Repair Models to Examine Putative Mechanisms of Cell Killing. Radiat. Res. 169, 447–459 (2008).
A kinetic repair-misrepair-fixation (RMF) model is developed to better link double-strand break (DSB) induction to reproductive cell death. Formulas linking linear-quadratic (LQ) model radiosensitivity parameters to DSB induction and repair explicitly account for the contribution to cell killing of unrejoinable DSBs, misrepaired and fixed DSBs, and exchanges formed through intra- and intertrack DSB interactions. Information from Monte Carlo simulations is used to determine the initial yields and complexity of DSBs formed by low- and high-LET radiations. Our analysis of published survival data for human kidney cells suggests that intratrack DSB interactions are negligible for low-LET radiations but increase rapidly with increasing LET. The analysis suggests that no class of DSB is intrinsically unrejoinable or that DSB reparability is not strictly determined by the number of lesions forming the DSB. For radiations with LET >110 keV/μm, the model predicts that the relative cell killing efficiency, per unit absorbed dose, should continue to increase, whereas data from published experiments indicate a reduced cell killing efficiency. This observation suggests that the Monte Carlo simulation overestimates the DSB yield beyond 110 keV/μm or that other biological phenomena not included in the model, such as proximity effects, are important. For 200–250 kVp X rays (∼1.9 keV/μm), only about 1% of the one-track killing is attributed to intratrack binary misrepair interactions. The analysis indicates that the remaining 99% of the lethal damage is due to other types of one-track damage, including possible unrepairable, misrepaired and fixed damage. Compared to the analysis of the X-ray results, 48% of the one-track lethal damage caused by 5.1 MeV α particles (∼88 keV/μm) is due to intratrack DSB interactions while the remainder is due to other forms of one-track damage.
Hafer, K., Iwamoto, K. S. and Schiestl, R. H. Refinement of the Dichlorofluorescein Assay for Flow Cytometric Measurement of Reactive Oxygen Species in Irradiated and Bystander Cell Populations. Radiat. Res. 169, 460–468 (2008).
Reactive oxygen species (ROS) have been implicated in many ionizing radiation-related phenomena, including bystander effects. The oxidation of 2′7′-dichlorofluorescin (DCFH) to fluorescent 2′7′-dichlorofluorescein (DCF) is commonly used for the detection of radiation-induced ROS. The DCF assay was adapted for efficient, systematic flow cytometry quantification of low-linear energy transfer (LET) γ-radiation-induced ROS in vitro in Chinese hamster ovary (CHO) cells. This method is optimized for increased sensitivity to radiation-induced ROS and to discriminate against measurement of extracellular ROS. This method can detect a significant increase in ROS in cells exposed to γ radiation at doses as low as 10 cGy. The antioxidants N-acetyl-cysteine and ascorbic acid (vitamin C) significantly reduced the amount of ROS measured in cells exposed to 5 Gy ionizing radiation. This method was used to measure the intracellular ROS in unirradiated CHO bystander cells co-cultured with low-LET-irradiated cells. No increase in ROS was measured in bystander cell populations co-cultured with the irradiated cells beginning 9 s after radiation exposure.
Hafer, K., Konishi, T. and Schiestl, R. H. Radiation-Induced Long-Lived Extracellular Radicals do not Contribute to Measurement of Intracellular Reactive Oxygen Species Using the Dichlorofluorescein Method. Radiat. Res. 169, 469–473 (2008).
The dichlorofluorescein method has become a standard technique for measuring reactive oxygen species (ROS) formed in cells by ionizing radiation. A recent report (Korystov et al., Radiat. Res. 168, 226–232, 2007) has suggested that the method is subject to an artifact in that it erroneously reports hydrogen peroxides generated in the extracellular medium as ROS formed intracellularly by ionizing radiation. It was hypothesized that radiation-induced extracellular peroxides enter cells in the minutes after radiation exposure and subsequently oxidize the intracellular dichlorofluorescin probe and that dichlorofluorescein fluorescence is not due to ROS formed intracellularly by ionizing radiation. We tested this hypothesis by measuring the contribution of long-lived radicals formed in medium by ionizing radiation on intracellular dichlorofluorescein fluorescence. We found no evidence that this artifact contributes significantly to intracellular dichlorofluorescein fluorescence. These results and those of Korystov et al. are discussed in view of cellular dichlorofluorescin leakage and radiation chemistry. We conclude that the dichlorofluorescein method is effective for quantifying intracellular ROS induced by ionizing radiation.
Brown, S. L., Kolozsvary, A., Liu, J., Ryu, S. and Kim, J. H. Histone Deacetylase Inhibitors Protect against and Mitigate the Lethality of Total-Body Irradiation in Mice. Radiat. Res. 169, 474–478 (2008).
It was hypothesized that histone deacetylase (HDAC) inhibitors may increase survival after total-body irradiation (TBI) based on previous reports demonstrating that HDAC inhibitors stimulate the proliferation of bone marrow stem cells. Using the time for mice to lose 20% or more of their weight as the end point, two HDAC inhibitors, valproic acid and trichostatin-A, were found to reduce lethality in a dose-dependent manner. HDAC inhibitors were effective at reducing lethality when given either 24 h before or 1 h after TBI. The results indicate that HDAC inhibitors have potential for protecting against and mitigating radiation-induced lethality.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere