BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Ainsbury, E. A., Bouffler, S. D., Dörr, W., Graw, J., Muirhead, C. R., Edwards, A. A. and Cooper, J. Radiation Cataractogenesis: A Review of Recent Studies. Radiat. Res. 172, 1-9 (2009).
The lens of the eye is recognized as one of the most radiosensitive tissues in the human body, and it is known that cataracts can be induced by acute doses of less than 2 Gy of low-LET ionizing radiation and less than 5 Gy of protracted radiation. Although much work has been carried out in this area, the exact mechanisms of radiation cataractogenesis are still not fully understood. In particular, the question of the threshold dose for cataract development is not resolved. Cataracts have been classified as a deterministic effect of radiation exposure with a threshold of approximately 2 Gy. Here we review the combined results of recent mechanistic and human studies regarding induction of cataracts by ionizing radiation. These studies indicate that the threshold for cataract development is certainly less than was previously estimated, of the order of 0.5 Gy, or that radiation cataractogenesis may in fact be more accurately described by a linear, no-threshold model.
Chylack, L. T., Jr., Peterson. L. E., Feiveson, A. H., Wear, M. L., Manuel, F. K., Tung, W. H., Hardy, D. S., Marak, L. J. and Cucinotta, F. A. NASA Study of Cataract in Astronauts (NASCA). Report 1: Cross-Sectional Study of the Relationship of Exposure to Space Radiation and Risk of Lens Opacity. Radiat. Res. 172, 10-20 (2009).
The NASA Study of Cataract in Astronauts (NASCA) is a 5-year longitudinal study of the effect of space radiation exposure on the severity/progression of nuclear, cortical and posterior subcapsular (PSC) lens opacities. Here we report on baseline data that will be used over the course of the longitudinal study. Participants include 171 consenting astronauts who flew at least one mission in space and a comparison group made up of three components: (a) 53 astronauts who had not flown in space, (b) 95 military aircrew personnel, and (c) 99 non-aircrew ground-based comparison subjects. Continuous measures of nuclear, cortical and PSC lens opacities were derived from Nidek EAS 1000 digitized images. Age, demographics, general health, nutritional intake and solar ocular exposure were measured at baseline. Astronauts who flew at least one mission were matched to comparison subjects using propensity scores based on demographic characteristics and medical history stratified by gender and smoking (ever/never). The cross-sectional data for matched subjects were analyzed by fitting customized non-normal regression models to examine the effect of space radiation on each measure of opacity. The variability and median of cortical cataracts were significantly higher for exposed astronauts than for nonexposed astronauts and comparison subjects with similar ages (P = 0.015). Galactic cosmic space radiation (GCR) may be linked to increased PSC area (P = 0.056) and the number of PSC centers (P = 0.095). Within the astronaut group, PSC size was greater in subjects with higher space radiation doses (P = 0.016). No association was found between space radiation and nuclear cataracts. Cross-sectional data analysis revealed a small deleterious effect of space radiation for cortical cataracts and possibly for PSC cataracts. These results suggest increased cataract risks at smaller radiation doses than have been reported previously.
Eric R. Bandstra, Raymond W. Thompson, Gregory A. Nelson, Jeffrey S. Willey, Stefan Judex, Mark A. Cairns, Eric R. Benton, Marcelo E. Vazquez, James A. Carson, Ted A. Bateman
Bandstra, E. R., Thompson, R. W., Nelson, G. A., Willey, J. S., Judex, S., Cairns, M. A., Benton, E. R., Vazquez, M. E., Carson, J. A. and Bateman, T. A. Musculoskeletal Changes in Mice from 20–50 cGy of Simulated Galactic Cosmic Rays. Radiat. Res. 172, 21-29 (2009).
On a mission to Mars, astronauts will be exposed to a complex mix of radiation from galactic cosmic rays. We have demonstrated a loss of bone mass from exposure to types of radiation relevant to space flight at doses of 1 and 2 Gy. The effects of space radiation on skeletal muscle, however, have not been investigated. To evaluate the effect of simulated galactic cosmic radiation on muscle fiber area and bone volume, we examined mice from a study in which brains were exposed to collimated iron-ion radiation. The collimator transmitted a complex mix of charged secondary particles to bone and muscle tissue that represented a low-fidelity simulation of the space radiation environment. Measured radiation doses of uncollimated secondary particles were 0.47 Gy at the proximal humerus, 0.24–0.31 Gy at the midbelly of the triceps brachii, and 0.18 Gy at the proximal tibia. Compared to nonirradiated controls, the proximal humerus of irradiated mice had a lower trabecular bone volume fraction, lower trabecular thickness, greater cortical porosity, and lower polar moment of inertia. The tibia showed no differences in any bone parameter. The triceps brachii of irradiated mice had fewer small-diameter fibers and more fibers containing central nuclei. These results demonstrate a negative effect on the skeletal muscle and bone systems of simulated galactic cosmic rays at a dose and LET range relevant to a Mars exploration mission. The presence of evidence of muscle remodeling highlights the need for further study.
Tian, J., Pecaut, M. J., Coutrakon, G. B., Slater, J. M. and Gridley, D. S. Response of Extracellular Matrix Regulators in Mouse Lung after Exposure to Photons, Protons and Simulated Solar Particle Event Protons. Radiat. Res. 172, 30-41 (2009).
This study compared the effects of photons (γ rays), protons and simulated solar particle event protons (sSPE) on the expression of profibrotic factors/extracellular matrix (ECM) regulators in lung tissue after whole-body irradiation. TGF-β1, matrix metalloproteinase 2 and 9 (MMP-2, -9), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1, -2) were assessed on days 4 and 21 in lungs from C57BL/6 mice exposed to 0 Gy or 2 Gy photons (0.7 Gy/min), protons (0.9 Gy/min) and sSPE (0.056 Gy/h). RT-PCR, histological and immunohistochemical techniques were used. The most striking changes included (1) up-regulation of TGF-β1 by photons and sSPE, but not protons, at both times, (2) MMP-2 enhancement by photons and sSPEs, (3) TIMP-1 up-regulation by photons at both times, and (4) more collagen accumulation after exposure to either photons or sSPE than after exposure to protons. The findings demonstrate that expression of important ECM regulators was highly dependent upon the radiation regimen as well as the time after exposure. The data further suggest that irradiation during an SPE may increase an astronaut's risk for pulmonary complications. The greater perturbations after photon exposure compared to proton exposure have clinical implications and warrant further investigation.
Tyburski, J. B., Patterson, A. D., Krausz, K. W., Slavík, J., Fornace, A. J. Jr., Gonzalez, F. J. and Idle, J. R. Radiation Metabolomics. 2. Dose- and Time-Dependent Urinary Excretion of Deaminated Purines and Pyrimidines after Sublethal Gamma-Radiation Exposure in Mice. Radiat. Res. 172, 42-57 (2009).
Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal γ-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2′-deoxyuridine, 2′-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2′-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8–12 h but returning to baseline by 36 h after exposure. It is proposed that 2′-deoxyuridine and 2′-deoxyxanthosine arise as a result of γ irradiation by nitrosative deamination of 2′-deoxycytidine and 2′-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.
Hariwara, A., Nakayama, F., Motomura, K., Asada, M., Suzuki, M., Imamura, T. and Akashi, M. Comparison of Expression Profiles of Several Fibroblast Growth Factor Receptors in the Mouse Jejunum: Suggestive Evidence for a Differential Radioprotective Effect among Major FGF Family Members and the Potency of FGF1. Radiat. Res. 172, 58-65 (2009).
Several members of the fibroblast growth factor (FGF) family have the potential to protect the intestine against the side effects of radiation therapy. FGF1 is capable of signaling through all subtypes of FGF receptors (FGFRs), whereas FGF7 and FGF10 activate only the epithelial-specific subtype, FGFR2IIIb (FGFR2b). The present study compared the protective activity of FGF1, FGF7 and FGF10 and examined the profiles of FGFR expression in the jejunum of BALB/c mice given total-body irradiation (TBI) with γ rays. TBI caused drastic increases in FGFR1–4 transcript levels in the jejunum. However, FGFR2b protein temporarily decreased at 12 and 24 h after irradiation. FGF1 pretreatment minimized the number of apoptotic cells in jejunal crypts at 16 and 24 h after irradiation and increased crypt survival most effectively. In addition, pretreatment with FGF7 or FGF10 decreased FGFR1 transcript levels. The greater effectiveness of FGF1 to enhance crypt survival was also observed even when each FGF was administered 1 h after irradiation. These findings indicate that FGF1 is more potent than FGF7 or FGF10 for protection of the intestine against radiation exposure and suggest that the profiles of FGFR expression in the intestine favor the FGF1 signaling pathway before and during the initial period after irradiation.
Masuda, H., Ushiyama, A., Takahashi, M., Wang, J., Fujiwara, O., Hikage, T., Nojima, T., Fujita, K., Kudo, M. and Ohkubo, C. Effects of 915 MHz Electromagnetic-Field Radiation in TEM Cell on the Blood-Brain Barrier and Neurons in the Rat Brain. Radiat. Res. 172, 66-73 (2009).
The aim of this study was to determine whether albumin leakage and dark neurons were present in rat brains 14 and 50 days after a single 2-h exposure to a 915 MHz electromagnetic field, as reported by Salford et al. (Environ. Health Perspect.111, 881–883, 203). Sixty-four male F344 rats (12 weeks old) were exposed to a 915 MHz electromagnetic field at whole-body average specific absorption rates of 0, 0.02, 0.2 and 2.0 W/kg in TEM cells for 2 h, following the protocol reported by Salford et al. The brains were examined histologically and immunohistochemically. No albumin immunoreactivity was observed in the exposed groups. In addition, dark neurons, assessed using hematoxylin and eosin staining, were rarely present, with no statistically significant difference between exposed and sham-exposed animals. This study thus failed to confirm the results of Salford et al.
Chakraborty, A., Held, K. D., Prise, K. M., Liber, H. L. and Redmond, R. W. Bystander Effects Induced by Diffusing Mediators after Photodynamic Stress. Radiat. Res. 172, 74-81 (2009).
The bystander effect, whereby cells that are not traversed by ionizing radiation exhibit various responses when in proximity to irradiated cells, is well documented in the field of radiation biology, Here we demonstrate that considerable bystander responses are also observed after photodynamic stress using the membrane-localizing dye deuteroporphyrin (DP). Using cells of a WTK1 human lymphoblastoid cell line in suspension and a transwell insert system that precludes contact between targeted and bystander cells, we have shown that the bystander signaling is mediated by diffusing species. The extranuclear localization of the photosensitizer used suggests that primary DNA damage is not the trigger for initiating these bystander responses, which include elevated oxidative stress, DNA damage (micronucleus formation), mutagenesis and decreased clonogenic survival. In addition, oxidative stress in the bystander population was reduced by the presence of the membrane antioxidant vitamin E in the targeted cells, suggesting that lipid peroxidation may play a key role in mediating these bystander effects. The fluence responses for these bystander effects are non-linear, with larger effects seen at lower fluences and toxicity to the target cell population. Hence, when considering outcomes of photodynamic action in cells and tissue, bystander effects may be significant, especially at sublethal fluences.
Warters, R. L., Packard, A. T., Kramer, G. F., Gaffney, D. K. and Moos, P. J. Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation. Radiat. Res. 172, 82-95 (2009).
Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation.
Weber, T. J., Opresko, L. K., Waisman, D. M., Newton, G. J., Quesenberry, R. D., Bollinger, N., Moore, R. J. and Smith, R. D. Regulation of the Low-Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2. Radiat. Res. 172, 96-105 (2009).
Here we identify the release of annexin A2 into the culture medium in response to low-dose X-radiation exposure and establish functional linkages to an established paracrine factor-mediated anchorage-independent growth response. Using a standard bicameral coculture model, we demonstrate that annexin A2 is secreted into the medium by irradiated cells (seeded in upper chamber) and is capable of binding to nonirradiated neighboring cells (seeded in lower chamber). The paracrine factor-mediated anchorage-independent growth response to low-dose X irradiation is reduced when irradiated annexin A2-silenced (shRNA) JB6 cells are co-cultured with nonirradiated cells relative to co-culture with irradiated annexin A2-competent vector control cells. Consistent with this observation, purified bovine annexin A2 tetramer induces anchorage-independent growth. These observations suggest that annexin A2 regulates, in part, the radiation paracrine factor-specific anchorage-independent growth response in JB6 cells.
Kaspler, P., Pintilie, M. and Hill, R. P. Dynamics of Micronuclei in Rat Skin Fibroblasts after X Irradiation. Radiat. Res. 172, 106-113 (2009).
In a previous study, we demonstrated DNA damage, expressed as micronuclei, in binucleate dermal fibroblasts obtained from human skin 2–9 weeks after fractionated radiotherapy. Here we assessed micronuclei in X-irradiated skin fibroblasts from 9–14-week-old female Lewis rats as a function of time after a single dose of radiation to determine the lifetime of such damage in the skin. After irradiation with 5, 10, 15 and 18 Gy, formation of micronuclei at 1 day or 2 months postirradiation increased up to about 10 Gy, with evidence for a plateau at higher doses. The time course of micronuclei present in the skin fibroblasts demonstrated a plateau region (approximately 20 days after 18 Gy and about 2 months after 10 Gy) before the number of micronuclei started to decline. Residual micronuclei were observed for more than 1 year after irradiation. Monomicronucleated cells predominated in fibroblasts from nonirradiated skin, whereas in fibroblasts from irradiated skin, multimicronucleated cells predominated and persisted (together with monomicronucleated cells) in the residual levels of damage at late times. The results suggest that DNA damage in dermal fibroblasts can be assayed by the micronucleus assay in samples from irradiated skin up to 1 month after irradiation for doses up to at least 10 Gy. Further studies are needed to define the dose–response relationship in detail.
Zheng, Y. and Sanche, L. Gold Nanoparticles Enhance DNA Damage Induced by Anti-cancer Drugs and Radiation. Radiat. Res. 172, 114-119 (2009).
The chemotherapeutic agent cisplatin was chemically linked to pGEM-3Zf(-) plasmid DNA to produce a cisplatin-DNA complex, Gold nanoparticles, which bind electrostatically to pure DNA, could also be added to this complex. Dry films of pure plasmid DNA and DNA-cisplatin, DNA-gold nanoparticles and DNA-cisplatin-gold nanoparticles complexes were bombarded by 60 keV electrons. The yields of single- and double-strand breaks were measured as a function of exposure by electrophoresis. From a comparison of such yields from the different type of films, we found that the binding of only one gold nanoparticle to a plasmid-cisplatin complex containing 3197 base pairs increases by a factor of 3 the efficiency of the chemotherapeutic agent cisplatin to produce double-strand breaks in irradiated DNA. Furthermore, adding two cisplatin molecules and one gold nanoparticle to DNA enhances radiation-induced DSBs by a factor of 7.5. A number of phenomena could contribute to this huge enhancement, including the higher density of low-energy electrons and reactive species around the gold nanoparticles and the weakening of bonds adjacent to cisplatin in the DNA backbone. The addition of gold nanoparticles to cisplatin and other platinum agents may therefore provide interesting avenues of research to improve the treatment of cancer by concomitant chemoradiation.
Tuner, H. and Korkmaz, M. Kinetic Features of the Radical Species Produced in γ-Irradiated dl-Tartaric Acid and the Dosimetric Potential of this Acid. Radiat. Res. 172, 120-128 (2009).
The room-temperature and high-temperature kinetic features of the radical species produced in solid dl-tartaric acid (dl-TA) γ-irradiated at room temperature and the dosimetric potential of this acid were investigated in a detailed ESR study. Irradiated dl-TA presents an ESR spectrum with many unresolved resonance lines even at the lowest radiation dose applied (100 Gy). The evolution of the signal intensities associated with induced radical species with microwave power, applied dose and temperature was followed. Three groups of resonance intensities originating from three different radicals exhibiting different spectroscopic features, stabilities at room and high temperatures, and radiation yields were found to take part in the formation of experimental ESR spectrum. These three species were calculated to exhibit spectroscopic features similar to those already reported for X- or γ-irradiated deuterated single crystals of dl-TA and assigned as I, II and III. The same radical notation was adopted in the present work, and the intensities related to these species were denoted with the names of their corresponding species. Species III, which had the lowest radiation yield and the lowest stability, was observed as a species of four resonance lines. The two inner constituents of these four lines were partially obscured by the two central doublets originating from species I and II. The latter were relatively stable and had activation energies around 35 kJ/mol. The percentage concentrations of the involved species were estimated by comparing experimental and calculated spectra. The reasonably high radical yields of the dl-TA in the dose range of interest, the fairly good stabilities of the species produced (I and II) at room temperature, and the almost linear features of the constructed dose–response curves led us to conclude that the intensities associated with the stable species (I and II) could be used to estimate the applied dose in the dose range of 100 Gy–34 kGy with fairly good accuracy and that dl-TA could be a good candidate for exploring low radiation dose measurements by ESR dosimetry.
Mark A. Henderson, Shailaja Valluri, Colleen DesRosiers, Jennifer T. Lopez, Christopher N. Batuello, Andrea Caperell-Grant, Marc S. Mendonca, Eva-Marie Powers, Robert M. Bigsby, Joseph R. Dynlacht
Henderson, M. A., Valluri, S., DesRosiers, C., Lopez, J. T., Batuello, C. N., Caperell-Grant, A., Mendonca, M. S., Powers, E., Bigsby, R. M. and Dynlacht, J. R. Effect of Gender on Radiation-Induced Cataractogenesis. Radiat. Res. 172, 129-133 (2009).
Radiation cataractogenesis is an important consideration for radiotherapy patients and for astronauts. Data in the literature suggest that gender and/or estrogen may play a role in the incidence of age-related cataracts. However, few data exist on the effect of gender on radiation-induced cataractogenesis. We compared the incidence and rate of progression of cataracts induced by ionizing radiation in male and female Sprague-Dawley rats. Male rats were implanted with either an empty silastic capsule or a capsule containing 17-β-estradiol. Ovary-intact female rats were implanted with empty capsules. All rats received a single dose of 10 Gy (60Co γ rays) to the right eye only. Lens opacification was measured at 2–4-week intervals with a slit lamp. The incidence of radiation-induced cataracts was significantly increased in male rats compared to female rats (P = 0.034). There was no difference in the rate of cataract progression between the three groups. Our data suggest there is a gender-related difference in radiation-induced cataractogenesis, but the increased incidence of radiation cataractogenesis in male rats compared to female rats cannot be attributed to estrogen levels, since there was no difference in cataract incidence between male rats implanted with empty capsules and those implanted with capsules containing 17-β-estradiol.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere