BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
It is critical to identify and gain a better understanding of the factors that enhance or reduce the risk of cataractogenesis, to minimize the possibility of occurrence after deliberate (e.g., radiation therapy, interplanetary travel) or unintentional exposure to ionizing radiation. Both gender and age at the time of exposure have been established as key determinants of cataractogenesis induced by sparsely ionizing (low-LET) and densely ionizing (high-LET) radiation. However, animal data from several older studies are often conflicting and somewhat difficult to interpret, in that the experiments suffered from small group sizes, limited dose ranges or short periods of observation, and human data are sparse or statistical significance is sometimes limited. Steroid sex hormones (SSH) may underlie age and gender-based differences in the progression and prevalence of cataracts that otherwise occur spontaneously in humans and animal models, and may also underlie age and sex-related differences in radiation cataractogenesis. Here, we review data that have aided in our understanding of the role of age, sex and steroid sex hormones in radiation cataractogenesis.
The dose of a substance that causes death in P% of a population is called an LDP, where LD stands for lethal dose. In radiation research, a common LDP of interest is the radiation dose that kills 50% of the population by a specified time, i.e., lethal dose 50 or LD50. When comparing LD50 between two populations, relative potency is the parameter of interest. In radiation research, this is commonly known as the dose reduction factor (DRF). Unfortunately, statistical inference on dose reduction factor is seldom reported. We illustrate how to calculate confidence intervals for dose reduction factor, which may then be used for statistical inference. Further, most dose reduction factor experiments use hundreds, rather than tens of animals. Through better dosing strategies and the use of a recently available sample size formula, we also show how animal numbers may be reduced while maintaining high statistical power. The illustrations center on realistic examples comparing LD50 values between a radiation countermeasure group and a radiation-only control. We also provide easy-to-use spreadsheets for sample size calculations and confidence interval calculations, as well as SAS® and R code for the latter.
We report a large-scale reduced expression of genes in pathways related to cell-type specific immunity functions that emerges from microarray analysis 48 h after ex vivo γ-ray irradiation (0, 0.5, 2, 5, 8 Gy) of human peripheral blood from five donors. This response is similar to that seen in patients at 24 h after the start of total-body irradiation and strengthens the rationale for the ex vivo model as an adjunct to human in vivo studies. The most marked response was in genes associated with natural killer (NK) cell immune functions, reflecting a relative loss of NK cells from the population. T- and B-cell mediated immunity genes were also significantly represented in the radiation response. Combined with our previous studies, a single gene expression signature was able to predict radiation dose range with 97% accuracy at times from 6–48 h after exposure. Gene expression signatures that may report on the loss or functional deactivation of blood cell subpopulations after radiation exposure may be particularly useful both for triage biodosimetry and for monitoring the effect of radiation mitigating treatments.
Relations based on the microdosimetric-kinetic (MK) model are presented that describe killing of mammalian cells by protracted continuous exposure to ionizing radiation of varying linear energy transfer quality (LET) at constant dose rate. The consequences of continuous irradiation exposure actually consisting of a discontinuous sequence of events corresponding to passage of each high-energy particle through or near the cell are incorporated into the model. The derived relations are applied to protracted irradiation experiments of Amdur and Bedford to determine the rate of repair of potentially lethal lesions. It is found that as the dose rate becomes less than about 5 Gy per hour the repair rate decreases significantly with decreasing dose rate. This suggests that repair function in these cells is induced and maintained in response to the intensity of irradiation. Clinical and radiation protection implications of this finding are noted.
Countermeasures against radiation are critically needed. Ideally, these measures would be easy to store, easy to administer and have minimal toxicity. We used oral delivery of interleukin 11 (IL11) in mice exposed to lethal doses of total-body irradiation (TBI). Animals were given IL11 by gavage at various daily doses beginning 24 h after TBI, which continued for 5 days. At a TBI of 9.0 Gy, mice treated with IL11 had a 70% survival at 30 days compared with control group survival of 25% (P = 0.035). At 10.0 Gy, treated animals had 50% survival at 30 days compared with no survivors in the control group. Treated animals had significant improvement in intestinal mucosal surface area and crypt survival. In addition bacterial translocation of coliform bacteria was significantly less in the treated animals. Systemic absorption of IL11 was low in treated animals and effects on the hematopoietic cells were not seen. Serum citrulline levels rebounded significantly faster after irradiation in the IL11 treated animals, indicating quicker recovery of small intestine health. These data suggest that IL11 given orally protects the intestinal mucosa from radiation damage and that this compound is beneficial as a mitigating agent even when started 24 h after radiation exposure.
Analysis of gamma-H2AX foci in blood lymphocytes is a promising approach for rapid dose estimation to support patient triage after a radiation accident but has one major drawback: the rapid decline of foci levels post-exposure cause major uncertainties in situations where the exact timing between exposure and blood sampling is unknown. To address this issue, radiation-induced apoptosis (RIA) in lymphocytes was investigated using fluorogenic inhibitors of caspases (FLICA) as an independent biomarker for radiation exposure, which may complement the gamma-H2AX assay. Ex vivo X-irradiated peripheral blood lymphocytes from 17 volunteers showed dose- and time-dependent increases in radiation-induced apoptosis over the first 3 days after exposure, albeit with considerable interindividual variation. Comparison with gamma-H2AX and 53BP1 foci counts suggested an inverse correlation between numbers of residual foci and radiation-induced apoptosis in lymphocytes at 24 h postirradiation (P = 0.007). In T-helper (CD4), T-cytotoxic (CD8) and B-cells (CD19), some significant differences in radiation induced DSBs or apoptosis were observed, however no correlation between foci and apoptosis in lymphocyte subsets was observed at 24 h postirradiation. While gamma-H2AX and 53BP1 foci were rapidly induced and then repaired after exposure, radiation-induced apoptosis did not become apparent until 24 h after exposure. Data from six volunteers with different ex vivo doses and post-exposure times were used to test the capability of the combined assay. Results show that simultaneous analysis of gamma-H2AX and radiation-induced apoptosis may provide a rapid and more accurate triage tool in situations where the delay between exposure and blood sampling is unknown compared to gamma-H2AX alone. This combined approach may improve the accuracy of dose estimations in cases where blood sampling is performed days after the radiation exposure.
Incidence of chronic bronchitis has been studied in a cohort of 12,210 workers first employed at one of the main plants of the Mayak nuclear facility during 1948–1958 and followed up to 31 December 2005. Information on external gamma doses is available for virtually all of these workers; in contrast, plutonium body burden was measured only for 30% of workers. During the follow-up period in the study cohort 1,175 incident cases of chronic bronchitis were verified. The analyses of nonradiation factors revealed that the underlying risk of chronic bronchitis incidence increased with increasing attained age and was higher among smokers compared with never-smokers as would be expected. The most interesting finding in relationship to nonradiation factors was a sharp increase in the baseline chronic bronchitis risk before 1960. The cause of this is not clear but a number of factors may play a role. Based on the follow-up data after 1960, the analysis showed a statistically significant linear dose response relationship with cumulative external gamma-ray dose (ERR/Gy = 0.14, 95% CI 0.01, 0.32). Based on the same subset but with an additional restriction to members with cumulative internal lung dose below 1 Gy, a statistically significant linear dose response relationship with internal alpha-radiation lung dose from incorporated plutonium was found (ERR/Gy = 2.70, 95% CI 1.20, 4.87). In both cases, adjustment was made for nonradiation factors, including smoking and either internal or external dose as appropriate. At present there are no similar incidence studies with which to compare results. However, the most recent data from the atomic bomb survivor cohort (the Life Span Study) showed statistically significant excess mortality risk for respiratory diseases of 22% per Gy and this value is within the confidence bounds of the point estimate of the risk from this study in relation to external dose.
Astronauts working and living in space are exposed to considerably higher doses and different qualities of ionizing radiation than people on Earth. The multilateral MATROSHKA (MTR) experiment, coordinated by the German Aerospace Center, represents the most comprehensive effort to date in radiation protection dosimetry in space using an anthropomorphic upper-torso phantom used for radiotherapy treatment planning. The anthropomorphic upper-torso phantom maps the radiation distribution as a simulated human body installed outside (MTR-1) and inside different compartments (MTR-2A: Pirs; MTR-2B: Zvezda) of the Russian Segment of the International Space Station. Thermoluminescence dosimeters arranged in a 2.54 cm orthogonal grid, at the site of vital organs and on the surface of the phantom allow for visualization of the absorbed dose distribution with superior spatial resolution. These results should help improve the estimation of radiation risks for long-term human space exploration and support benchmarking of radiation transport codes.
Ionizing radiation causes various epigenetic changes, as well as a variety of DNA lesions such as strand breaks, cross-links, oxidative damages, etc., in genomes. However, radiation-induced epigenetic changes have rarely been substantiated in plant genomes. The current study investigates whether DNA methylation of Arabidopsis thaliana genome is altered by gamma rays. We found that genomic DNA methylation decreased in wild-type plants with increasing doses of gamma rays (5, 50 and 200 Gy). Irradiation with 200 Gy significantly increased the expression of transcriptionally inactive centromeric 180-bp (CEN) and transcriptionally silent information (TSI) repeats. This increase suggested that there was a substantial release of transcriptional gene silencing by gamma rays, probably by induction of DNA hypomethylation. High expression of the DNA demethylase ROS1 and low expression of the DNA methyltransferase CMT3 supported this hypothesis. Moreover, Southern blot analysis following digestion of genomic DNA with methylation-sensitive enzymes revealed that the DNA hypomethylation occured preferentially at CHG or CHH sites rather than CG sites, depending on the radiation dose. Unlike CEN and TSI repeats, the number of Ta3, AtSN1 and FWA repeats decreased in transcription but increased in non-CG methylation. In addition, the cmt3-11 mutant showed neither DNA hypomethylation nor transcriptional activation of silenced repeats upon gamma irradiation. Furthermore, profiles of genome-wide transcriptomes in response to gamma rays differed between the wild-type and cmt3-11 mutant. These results suggest that gamma irradiation induced DNA hypomethylation preferentially at non-CG sites of transcriptionally inactive repeats in a locus-specific manner, which depends on CMT3 activity.
Xiang Hong Li, Sanchita P. Ghosh, Cam T. Ha, Dadin Fu, Thomas B. Elliott, David L. Bolduc, Vilmar Villa, Mark H. Whitnall, Michael R. Landauer, Mang Xiao
We recently demonstrated that natural delta-tocotrienol (DT3) significantly enhanced survival in total-body irradiated (TBI) mice, and protected mouse bone marrow cells from radiation-induced damage through Erk activation-associated mTOR survival pathways. Here, we further evaluated the effects and mechanisms of DT3 on survival of radiation-induced mouse acute gastrointestinal syndrome. DT3 (75–100 mg/kg) or vehicle was administered as a single subcutaneous injection to CD2F1 mice 24 h before 10–12 Gy 60Co total-body irradiation at a dose rate of 0.6 Gy/min and survival was monitored. In a separate group of mice, jejunum sections were stained with hematoxylin and eosin and the surviving crypts in irradiated mice were counted. Apoptosis in intestinal epithelial cells was measured by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining and bacterial translocation from gut to heart, spleen and liver in irradiated mice were evaluated. DT3 (75 mg/kg) significantly enhanced survival in mice that received 10, 10.5, 11 or 12 Gy TBI. Administration of DT3 protected intestinal tissue, decreased apoptotic cells in jejunum and inhibited gut bacterial translocation in irradiated mice. Furthermore, DT3 significantly inhibited radiation-induced production of pro-inflammatory factors interleukin-1β and −6 and suppressed expression of protein tyrosine kinase 6 (PTK6), a stress-induced kinase that promotes apoptosis in mouse intestinal cells. Our data demonstrate that administration of DT3 protected mice from radiation-induced gastrointestinal system damage.
Phillip D. Rivera, Hung-Ying Shih, Junie A. LeBlanc, Mara G. Cole, Wellington Z. Amaral, Shibani Mukherjee, Shichuan Zhang, Melanie J. Lucero, Nathan A. DeCarolis, Benjamin P. C. Chen, Amelia J. Eisch
Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere