BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Prostate cancer patients undergoing localized external beam radiation therapy (EBRT) can experience a progressive increase in fatigue, which can affect physical functioning and quality of life. The purpose of this study was to develop a mouse EBRT prostate cancer treatment model with which to determine the role of pro-inflammatory cytokines in the genesis of EBRT-related fatigue. We assessed voluntary wheel-running activity (VWRA) as a proxy for fatigue, food intake and body weight in male C57BL/6 mice undergoing EBRT to the pelvis. In the first experiment, anesthetized male C57BL/6 mice underwent fractionated EBRT to the pelvis for a total dose of 68.2 Gy, thereby mimicking a clinically relevant therapeutic dose and frequency. The day after the last treatment, levels of IL-1β and TNF-α in plasma along with mRNA levels in liver, colon and whole brain were measured. EBRT-induced fatigue resulted in reduced body weight, diminished food intake, and increased plasma and tissue levels of IL-1β and TNF-α. In a follow-up experiment, we used TNF-α-deficient mice to further delineate the role of TNF-α signaling in EBRT-induced sickness behavior. EBRT-induced changes in fatigue, food intake and body weight were no different between TNF-α deficient mice and their wild-type counterparts. Taken together our data demonstrate that a clinically relevant localized irradiation of the pelvis induces a systemic IL-1β and TNF-α response and sickness behavior in mice, but the TNF-α signaling pathway alone does not independently mediate these effects.
Astronauts on deep space missions will be required to work more autonomously than on previous missions, and thus their ability to perform executive functions could be critical to mission success. In this study we have determined the impact that exposure to 10, 15 and 20 cGy of 1 GeV/n 48Ti particles has on the long-term (three-months post exposure) ability of male retired breeder Wistar rats to perform attentional set shifting. The ability of the rats to conduct compound discrimination reversal (CDR) was significantly impaired at all doses studied, with compound discrimination (CD) being impaired at 10 and 15 cGy. Impaired CD performance would result in a decreased ability to identify and focus on relevant aspects of a task being conducted, while the functional consequence of an impaired CDR performance would be a reduction in the individual's ability to recognize when that factor changes from a positive to a negative factor for the successful completion of a task. In contrast to our previous study with 1 GeV/n 56Fe particles, there were no significant impairments in the ability of the 48Ti-irradiated rats to conduct simple discrimination. This study further supports the notion that “mission-relevant” doses of HZE particles (<20 cGy) can impair certain aspects of attentional set-shifting performance in retired breeder rats, but there may be some ion-specific changes in the specific cognitive domains impaired.
Jacob Raber, Antiño R. Allen, Sourabh Sharma, Barrett Allen, Susanna Rosi, Reid H. J. Olsen, Matthew J. Davis, Massarra Eiwaz, John R. Fike, Gregory A. Nelson
The space radiation environment contains protons and 56Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), 56Fe alone (600 MeV/n, 0.5 Gy) or combined proton and 56Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and 56Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with 56Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or 56Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to 56Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in 56Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined radiations. The levels of MDC and eotaxin correlated and the levels of MDC, but not eotaxin, correlated with the percentage of newly born activated microglia in the blades of the dentate gyrus. Finally, hippocampal IL-6 levels were higher in mice receiving combined radiations compared with mice receiving 56Fe radiation alone. These data demonstrate the sensitivity of novel object recognition for detecting cognitive injury three months after exposure to proton radiation alone, and combined exposure to proton and 56Fe radiations, and that newly-born activated microglia and inflammation might be involved in this injury.
Pharmacological ascorbate (AscH−) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells compared with normal cells. Positron emission tomography (PET) with the thymidine analog 3′-deoxy-3′-(18F) fluorothymidine (FLT) enables noninvasive imaging and quantification of the proliferation fraction of tumors. We hypothesized that the rate of tumor proliferation determined by FLT-PET imaging, would be inversely proportional to tumor susceptibility to pharmacological AscH−-based treatments. Indeed, there was decreased FLT uptake in human pancreatic cancer cells treated with AscH−in vitro, and this effect was abrogated by co-treatment with catalase. In separate experiments, cells were treated with AscH−, ionizing radiation or a combination of both. These studies demonstrated that combined AscH− and radiation treatment resulted in a significant decrease in FLT uptake that directly correlated with decreased clonogenic survival. MicroPET 18F-FLT scans of mice with pre-established tumors demonstrated that AscH− treatment induced radiosensitization compared to radiation treatment alone. These data support testing of pharmacological ascorbate as a radiosensitizer in pancreatic cancer as well as the use of FLT-PET to monitor response to therapy.
Murine small intestinal motility consists of phasic contraction from interstitial cells of Cajal (ICC) and migrating motor complexes (MMCs) from the enteric nervous system. The number of ICC is reduced in various gastrointestinal disorders, and this effect can be reversed once the disorder is resolved through cellular and tissue remodelling. Exposure to high-dose radiation can induce inflammation and alter intestinal motility. In this study, we investigated the changes in the small intestinal motility of 8- to 10-week-old male C3H/HeN mice after high-dose (13 Gy) irradiation. The aim of this study was to determine whether those changes are caused by changes in the ICC or enteric nervous system. After irradiation, the small intestine was dissected and stored in oxygenated Krebs-Ringer bicarbonate solution. The tension of contractions and intracellular membrane potentials were recorded at day 0, 1, 3 and 5 after irradiation and compared with those of sham-irradiated mice. Histological evaluation was performed by immunohistochemistry and apoptosis was evaluated. Quantitative real-time polymerase chain reaction (qPCR) for c-kit mRNA was also performed. Phasic contractions were not changed at day 0, 1, 3 and 5 after irradiation and did not significantly differ from those in the control mice. Slow waves were also sustained after irradiation. However, the frequency of migrating motor complexes (MMCs) was significantly higher at day 0 and 1 after exposure and the amplitude and area under the curve were significantly lower at day 3 after exposure compared with control mice. MMCs were recovered at day 5 with no difference from those of the control mice. ICC were detected after irradiation by immunohistochemistry for c-kit, and c-kit mRNA levels did not differ between sham-irradiated and irradiated mice. Histological evaluation showed that the most severe inflammation was detected at day 3 after irradiation, and apoptosis was detected only in the mucosa. Acetylcholine increased the contractility after irradiation, and tetrodotoxin decreased the number of MMCs in sham-irradiated and irradiated mice. Nw-oxide-l-arginine (L-NA) increased the number of MMCs. MMCs were recovered after L-NA treatment at day 3 after irradiation. Sodium nitroprusside decreased the MMCs in sham-irradiated and irradiated mice. Exposure to high-dose radiation did not alter phasic contractions and slow waves in the small intestine of mice, which suggests that ICC and their functions may be sustained after high-dose irradiation. Mucosal inflammation was severe after irradiation and there were some changes in MMCs related to the enteric nervous system.
Dysfunction of the intestinal epithelial barrier and leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed “tight junction” (Tj), which are disrupted after total-body irradiation (TBI). In this study, we investigated radiation-induced alterations in Tj-related proteins in the jejunum, ileum and colon of a non-human primate (NHP) model. NHPs were total-body irradiated with 6.7 and 7.4 Gy and intestines were procured at day 4, 7 and 12. Radiation exposure was found to induce significant increases in claudin-10 mRNA early (day 4) in all three gut segments and claudin-4 mRNA levels were repressed through day 12. TNF-alpha was highly induced in the jejunum and colon at early time points, but little induction was found in the ileum. Claudin-1 was induced only in the colon on day 4 postirradiation. Unlike the colon and jejunum, the ileum levels of claudin-7 were significantly downregulated through day 12 postirradiation. Western blot analysis revealed increased levels of claudin-2 on day 4 and of JAM-1 on day 7 postirradiation in all three gut segments. E-cadherin was downregulated on day 4 postirradiation in all segments, but remained reduced in the jejunum only until day 12. Taken together, these data suggest that exposure to radiation causes segment-specific alterations in the expression of Tj-related proteins. Interruption of Tjs may be a key factor contributing to injury to the intestinal mucosal barrier and increased intestinal permeability.
Synchrotron microbeam radiation treatment (MRT) is a preclinical radiotherapy technique with considerable clinical promise, although some of the underlying radiobiology of MRT is still not well understood. In recently reported studies, it has been suggested that MRT elicits a different tumor immune profile compared to broad-beam treatment (BB). The aim of this study was to investigate the effects of synchrotron MRT and BB on eosinophil-associated gene pathways and eosinophil numbers within and around the tumor in the acute stage, 48 h postirradiation. Balb/C mice were inoculated with EMT6.5 mouse mammary tumors and irradiated with microbeam radiation (112 and 560 Gy) and broad-beam radiation (5 and 9 Gy) at equivalent doses determined from a previous in vitro study. After tumors were collected 24 and 48 h postirradiation, RNA was extracted and quantitative PCR performed to assess eosinophil-associated gene expression. Immunohistochemistry was performed to detect two known markers of eosinophils: eosinophil-associated ribonucleases (EARs) and eosinophil major basic protein (MBP). We identified five genes associated with eosinophil function and recruitment (Ear11, Ccl24, Ccl6, Ccl9 and Ccl11) and all of them, except Ccl11, were differentially regulated in synchrotron microbeam-irradiated tumors compared to broad-beam-irradiated tumors. However, immunohistochemical localization demonstrated no significant differences in the number of EAR- and MBP-positive eosinophils infiltrating the primary tumor after MRT compared to BB. In conclusion, our work demonstrates that the effects of MRT on eosinophil-related gene pathways are different from broad-beam radiation treatment at doses previously demonstrated to be equivalent in an in vitro study. However, a comparison of the microenvironments of tumors, which received MRT and BB, 48 h after exposure showed no difference between them with respect to eosinophil accumulation. These findings contribute to our understanding of the role of differential effects of MRT on the tumor immune response.
Seishi Kyoizumi, Yoshiko Kubo, Munechika Misumi, Junko Kajimura, Kengo Yoshida, Tomonori Hayashi, Kazue Imai, Waka Ohishi, Kei Nakachi, Lauren F. Young, Jae-Hung Shieh, Malcolm A. Moore, Marcel R. M. van den Brink, Yoichiro Kusunoki
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34Lin−) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34Lin− cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34Lin− cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34Lin− cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels.
There are few safe and effective drugs available that protect healthy tissue against radiation-induced damage, highlighting the need to develop such radioprotective agents. We investigated the mechanism underlying the protective effects of the novel, recombinant, flagellin-like protein FlaA N/C against radiation-induced tissue damage in female BALB/c mice. FlaA N/C treatment increased the levels of several pro-proliferative cytokines while inhibiting apoptosis and reducing inflammation. These effects were accompanied by activation of the nuclear factor κB signaling pathway via direct interaction of FlaA N/C with Toll-like receptor 5, as well as enhanced survival of mice after total-body irradiation compared to that observed with treatment with amifostine, a radioprotective agent that is currently being used in clinical practice. These results indicate that FlaA N/C could be further explored as a possible protector of damage to healthy tissue during radiotherapy.
In this work, we show a new therapeutic approach using 40–120 keV X rays to deliver a radiation dose at the isocenter located many centimeters below the skin surface several hundred times greater than at the skin and how this dose enhancement can be augmented with nanomaterials to create several thousand-fold total dose enhancement effect. This novel approach employs a needle X-ray beam directed at the isocenter centimeters deep in the body while continuously scanning the beam to cover a large solid angle without overlapping at the skin. A Monte Carlo method was developed to simulate an X-ray dose delivered to the isocenter filled with X-ray absorbing and catalytic nanoparticles in a water phantom. An experimental apparatus consisting of a moving plastic phantom irradiated with a stationary 1 mm needle X-ray beam was built to test the theoretical predictions. X-ray films were used to characterize the dose profiles of the scanning X-ray apparatus. Through this work, it was determined that the X-ray dose delivered to the isocenter in a treatment voxel (t-voxel) underneath a 5 cm deep high-density polyethylene (HDPE) phantom was 295 ± 48 times greater than the surface dose. This measured value was in good agreement with the theoretical predicted value of 339-fold. Adding X-ray-absorbing nanoparticles, catalytic nanoparticles or both into the t-voxel can further augment the dose enhancement. For example, we predicted that adding 1 weight percentage (wp) of gold into water could increase the effective dose delivered to the target by onefold. Dose enhancement using 1 mm X-ray beam could reach about 1,600-fold in the t-voxel when 7.5 wp of 88 nm diameter silica-covered gold nanoparticles were added, which we showed in a previously published study can create a dose enhancement of 5.5 ± 0.46-fold without scanning focusing enhancement. Based on the experimental data from that study, mixing 0.02 wp 2.5 nm diameter small tetrakis hydroxymethyl phosphonium chloride (THPC)-coated gold nanoparticles, which created chemical enhancement, with the 7.5 wp 88 nm diameter silica-covered gold nanoparticles, could further double the dose effect at the isocenter, resulting in a total dose enhancement effect of 3,245 ± 600-fold. These results indicate that the three-dimensional scanning focusing method using a needle beam of X rays can deliver a dose several hundred times greater at a deeply embeded target located well below the skin surface. Total dose effect can be enhanced to several thousand-fold by augmenting the scanning focusing effect with X-ray-absorbing and catalytic nanoparticles in the t-voxel.
There is growing evidence to suggest that radiotherapy can paradoxically promote tumor invasion and metastatic processes, however, the underlying molecular mechanisms remain obscure. In this study, we found that exposure to X rays promoted cell invasion by triggering the epithelial mesenchymal transition (EMT) in two hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. This was made evident by a reduced expression of E-cadherin and enhanced expressions of N-cadherin, Vimentin and Snail. Moreover, exposure to radiation stimulated the signaling of hydrogen sulfide (H2S), a newly found gas transmitter, by upregulating the expressions of H2S-producing proteins of cysthionine-γ-lyase (CSE), cystathionine-β-synthase (CBS). Inhibition of CSE by siRNA or inhibitor not only increased the radiosensitivity but also strongly suppressed radiation-enhanced invasive properties of HCC cells. Interestingly, we found that H2S/CSE inhibition attenuated radiation-enhanced EMT, and the above effect was an end result of blockage of the radiation-activated pathway of p38 mitogen-activated protein kinase (p38MAPK). Collectively, our findings indicate that radiation could promote HCC cell invasion through EMT mediated by endogenous H2S/CSE signaling via the p38MAPK pathway.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere