BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In an era when extensive research is being funded to mitigate the radiation risks of a human traveling to Mars or the potential effects of a nuclear detonation in an urban environment, it is difficult to understand why the medical and research community remains largely uninterested in pelvic radiation disease (PRD), a condition that afflicts half a million patients every year after radiotherapy for pelvic cancer. There has been significant progress in understanding the nature of normal tissue injury, especially as it affects the GI tract. Clear clinical data exist on how best to assess and improve symptoms and there are a number of options for how to modulate the underlying progressive pathophysiology of PRD. Annually, there are more patients who develop PRD than inflammatory bowel disease (IBD). Despite the similarity in PRD and IBD symptoms, the same expertise that promotes assessment, treatment and disease-modifying approaches as standard of care in IBD is almost nonexistent for those suffering from PRD, and as a result the unmet need is enormous. Curing or controlling cancer without addressing quality of life is no longer acceptable when half of all patients diagnosed with cancer live for 10 years after treatment. For those patients afflicted with PRD it can cause significant misery, and this situation is unacceptable; investment in training and research cannot be delayed any longer.
The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.
This article provides an overview of four radiological accidents in Latin America, and includes a history of the events, the clinical manifestations and health consequences for the exposed individuals, the medical response based on preclinical studies and the role of the International Atomic Energy Agency (IAEA) in coordinating medical response assistance.
Gabriel Chodick, Alice J. Sigurdson, Ruth A. Kleinerman, Charles A. Sklar, Wendy Leisenring, Ann C. Mertens, Marilyn Stovall, Susan A. Smith, Rita E, Weathers, Lene H. S. Veiga, Leslie L. Robison, Peter D. Inskip
With therapeutic successes and improved survival after a cancer diagnosis in childhood, increasing numbers of cancer survivors are at risk of subsequent treatment-related morbidities, including cataracts. While it is well known that the lens of the eye is one of the most radiosensitive tissues in the human body, the risks associated with radiation doses less than 2 Gy are less understood, as are the long- and short-term cataract risks from exposure to ionizing radiation at a young age. In this study, we followed 13,902 five-year survivors of childhood cancer in the Childhood Cancer Survivor Study cohort an average of 21.4 years from the date of first cancer diagnosis. For patients receiving radiotherapy, lens dose (mean: 2.2 Gy; range: 0–66 Gy) was estimated based on radiotherapy records. We used unconditional multivariable logistic regression models to evaluate prevalence of self-reported cataract in relationship to cumulative radiation dose both at five years after the initial cancer diagnosis and at the end of follow-up. We modeled the radiation effect in terms of the excess odds ratio (EOR) per Gy. We also analyzed cataract incidence starting from five years after initial cancer diagnosis to the end of follow-up using Cox regression. A total of 483 (3.5%) cataract cases were identified, including 200 (1.4%) diagnosed during the first five years of follow-up. In a multivariable logistic regression model, cataract prevalence at the end of follow-up was positively associated with lens dose in a manner consistent with a linear dose-response relationship (EOR per Gy = 0.92; 95% CI: 0.65–1.20). The odds ratio for doses between 0.5 and 1.5 Gy was elevated significantly relative to doses <0.5 Gy (OR = 2.2; 95% CI: 1.3–3.7). The results from this study indicate a strong association between ocular exposure to ionizing radiation and long-term risk of pre-senile cataract. The risk of cataract increased with increasing exposure, beginning at lens doses as low as 0.5 Gy. Our findings are in agreement with a growing body of evidence of an elevated risk for lens opacities in populations exposed to doses of ionizing radiation below the previously suggested threshold level of 2 Gy.
We have previously reported that circulating interleukin-18 (IL-18) can be used as a radiation biomarker in mice, minipigs and nonhuman primates. In this study, we further determined the serum levels of IL-18 binding protein (IL-18BP), a natural endogenous antagonist of IL-18, in CD2F1 mice 1–13 days after total-body gamma irradiation (TBI) with different doses (5–10 Gy). We compared the changes in blood lymphocyte, neutrophil and platelet counts as well as the activation of the proapoptotic executioner caspase-3 and caspase-7, and the expression of the inflammatory factor cyclooxygenase 2 (COX-2) in spleen cells, with the changes of IL-18BP and IL-18 in mouse serum. We also evaluated the significance, sensitivity and specificity of alterations in radiation-induced IL-18BP. IL-18 increased from day 1–13 after TBI in a dose-dependent manner that was paralleled with an increase in IL-18 receptor alpha (IL-18Rα) in irradiated mouse spleen cells. IL-18BP rapidly increased (25–63 fold) in mouse serum on day 1 after different doses of TBI. However, it returned to baseline within 3 days after 5–7 Gy doses and within 7 days after 8 Gy dose, and was unaltered thereafter. In contrast, high doses of radiation (9 and 10 Gy) significantly sustained a higher level of IL-18BP in mouse serum and later induced a second phase of increase in IL-18BP on day 9–13 after irradiation, which coincided with the onset of animal mortality. Consistent with this observation, highly activated caspase-3 and −7 in 8–10 Gy irradiated mouse spleen cells exhibited reduced or no activity 24 h after 5 Gy, although radiation induced an inflammatory response, as shown by COX-2 expression in all irradiated cells. Our data suggest that the radiation-induced differential elevation of IL-18 and IL-18BP in animal serum is a dynamic and discriminative indicator of the severity of injury after exposure to ionizing radiation. These findings support the inclusion of the dual biomarkers IL-18BP and IL-18 in the development of a multifactorial strategy for radiation dose and injury assessment.
Cedric Spaas, Rüveyda Dok, Olivier Deschaume, Bert De Roo, Mattias Vervaele, Jin Won Seo, Carmen Bartic, Peter Hoet, Frank Van den Heuvel, Sandra Nuyts, Jean-Pierre Locquet
Gold nanoparticles functionalized with polyethylene glycol of different chain lengths are used to determine the influence of the capping layer thickness on the radiosensitizing effect of the particles. The size variations in organic coating, built up with polyethylene glycol polymers of molecular weight 1–20 kDa, allow an evaluation of the decrease in dose enhancement percentages caused by the gold nanoparticles at different radial distances from their surface. With localized eradication of malignant cells as a primary focus, radiosensitization is most effective after internalization in the nucleus. For this reason, we performed controlled radiation experiments, with doses up to 20 Gy and particle diameters in a range of 5–30 nm, and studied the relaxation pattern of supercoiled DNA. Subsequent gel electrophoresis of the suspensions was performed to evaluate the molecular damage and consecutively quantify the gold nanoparticle sensitization. In conclusion, on average up to 58.4% of the radiosensitizing efficiency was lost when the radial dimensions of the functionalizing layer were increased from 4.1 to 15.3 nm. These results serve as an experimental supplement for biophysical simulations and demonstrate the influence of an important parameter in the development of nanomaterials for targeted therapies in cancer radiotherapy.
Martin A. Ebert, Bipina Dhal, Janelle Prunster, Sally McLaren, Nikolajs Zeps, Michael House, Brigitte Reniers, Frank Verhaegen, Tammy Corica, Christobel Saunders, David J. Joseph
In vivo validation of models of DNA damage repair will enable their use for optimizing clinical radiotherapy. In this study, a theoretical assessment was made of DNA double-strand break (DSB) induction in normal breast tissue after intraoperative radiation therapy (IORT), which is now an accepted form of adjuvant radiotherapy for selected patients with early breast cancer. DSB rates and relative biological effectiveness (RBE) were calculated as a function of dose, radiation quality and dose rate, each varying based on the applicator size used during IORT. The spectra of primary electrons in breast tissue adjacent to each applicator were calculated using measured X-ray spectra and Monte Carlo methods, and were used to inform a Monte Carlo damage simulation code. In the absence of repair, asymptotic RBE values (relative to 60Co) were approximately 1.5. Beam-quality changes led to only minor variations in RBE among applicators, though differences in dose rate and overall dose delivery time led to larger variations and a rapid decrease in RBE. An experimental assessment of DSB induction was performed ex vivo using pre- and postirradiation tissue samples from patients receiving breast intraoperative radiation therapy. Relative DSB rates were assessed via γ-H2AX immunohistochemistry using proportional staining. Maximum-likelihood parameter estimation yielded a DSB repair halftime of 25.9 min (95% CI, 21.5–30.4 min), although the resulting model was not statistically distinguishable from one where there was no change in DSB yield among patients. Although the model yielded an in vivo repair halftime of the order of previous estimates for in vitro repair halftimes, we cannot conclude that it is valid in this context. This study highlights some of the uncertainties inherent in population analysis of ex vivo samples, and of the quantitative limitations of immunohistochemistry for assessment of DSB repair.
Reproductive cell death (RCD) occurs after one or more cell divisions resulting from an insult such as radiation exposure or other treatments with carcinogens or mutagens. The radioadaptive response for RCD is usually investigated by in vitro or in vivo clonogenic assay. To date, this has not been demonstrated in the vulval tissue in Caenorhabditis elegans (C. elegans), which is a well established in vivo model for radiation-induced RCD. In this study to determine whether radioadaptive response occurs in the vulval tissue model of C. elegans, early larval worms were gamma irradiated with lower adaptive doses, followed by higher challenge doses. The ratio of protruding vulva was used to assess the RCD of vulval cells. The results of this study showed that the radioadaptive response for RCD in this vulval tissue model could be well induced by dose combinations of 5 75 Gy and 5 100 Gy at the time point of 14–16 h in worm development. In addition, the time course analysis indicated that radioresistance in vulval cells developed within 1.75 h after an adaptive dose and persisted for only a short period of time (2–4 h). DNA damage checkpoint and non-homologous end joining were involved in the radioadaptive response, exhibiting induction of protruding vulva in worms deficient in these two pathways similar to their controls. Interestingly, the DNA damage checkpoint was not active in the somatic vulval cells, and it was therefore suggested that the DNA damage checkpoint might mediate the radioadaptive response in a cell nonautonomous manner. Here, we show evidence of the occurrence of a radioadaptive response for RCD in the vulval tissue model of C. elegans. This finding provides a potential opportunity to gain further insight into the underlying mechanisms of the radioadaptive response for RCD, in view of the abundant genetic resources of C. elegans.
G. L. Gravina, C. Festuccia, V. M. Popov, A. Di Rocco, A. Colapietro, P. Sanità, S. Delle Monache, D. Musio, F. De Felice, E. Di Cesare, V. Tombolini, F. Marampon
We have previously reported that the MEK/ERK pathway sustains in vitro and in vivo transformed phenotype and radioresistance of embryonal rhabdomyosarcoma (ERMS) cell lines. Furthermore, we found that aberrant MEK/ERK signaling activation promotes c-Myc oncoprotein accumulation. In this study, the role of c-Myc in sustaining the ERMS transformed and radioresistant phenotype is characterized. RD and TE671 cell lines conditionally expressing MadMyc chimera protein, c-Myc-dominant negative and shRNA directed to c-Myc were used. Targeting c-Myc counteracted in vitro ERMS adherence and in suspension, growth motility and the expression of pro-angiogenic factors. c-Myc depletion decreased MMP-9, MMP-2, u-PA gelatinolytic activity, neural cell adhesion molecule sialylation status, HIF-1α, VEGF and increased TSP-1 protein expression levels. Rapid but not sustained targeting c-Myc radiosensitized ERMS cells by radiation-induced apoptosis, DNA damage and impairing the expression of DNA repair proteins RAD51 and DNA-PKcs, thereby silencing affected ERMS radioresistance. c-Myc sustains ERMS transformed phenotype and radioresistance by protecting cancer cells from radiation-induced apoptosis and DNA damage, while promoting radiation-induced DNA repair. This data suggest that c-Myc targeting can be tested as a promising treatment in cancer therapy.
Cranial X irradiation can severely impair higher brain function, resulting in neurocognitive deficits. Radiation-induced brain injury is characterized by acute, early and late delayed changes, and morbidity is evident more than 6 months after irradiation. While the acute effects of radiation exposure on the brain are known, the underlying mechanisms remain unclear. In this study, we examined the acute effect of X radiation on synaptic function using behavioral analysis and immunohistochemistry. We found that 10 Gy whole-brain irradiation immediately after conditioning (within 30 min) impaired the formation of fear memory, whereas irradiation 24 h prior to conditioning did not. To investigate the mechanisms underlying these behavioral changes, we irradiated one hemisphere of the brain and analyzed synaptic function and adult neurogenesis immunohistochemically. We focused on drebrin, whose loss from dendritic spines is a surrogate marker of synaptopathy. The intensity of drebrin immunoreactivity started to decrease in the irradiated hemisphere 2 h after exposure. The immunostaining intensity recovered to preirradiation levels by 24 h, indicating that X radiation induced transient synaptic dysfunction. Interestingly, the number of newly generated neurons was not changed at 2 h postirradiation, whereas it was significantly decreased at 8 and 24 h postirradiation. Because irradiation 24 h prior to conditioning had no effect on fear memory, our findings suggest that radiation-induced death of newly-generated neurons does not substantially impact fear memory formation. The radiation-induced synaptic dysfunction likely caused a transient memory deficit during the critical period for fear memory formation (approximately 1–3 h after conditioning), which coincides with a change in drebrin immunostaining in the hippocampus, a structure critical for fear memory formation.
Over the past decades, little progress has been made to improve the extremely low survival rates in pancreatic cancer patients. Extreme hypoxia observed in pancreatic tumors contributes to the aggressive and metastatic characteristics of this tumor and can reduce the effectiveness of conventional radiation therapy and chemotherapy. In an attempt to reduce hypoxia-induced obstacles to effective radiation treatment, we used a novel device, the implantable micro-oxygen generator (IMOG), for in situ tumor oxygenation. After subcutaneous implantation of human pancreatic xenograft tumors in athymic rats, the IMOG was wirelessly powered by ultrasonic waves, producing 30 μA of direct current (at 2.5 V), which was then utilized to electrolyze water and produce oxygen within the tumor. Significant oxygen production by the IMOG was observed and corroborated using the NeoFox oxygen sensor dynamically. To test the radiosensitization effect of the newly generated oxygen, the human pancreatic xenograft tumors were subcutaneously implanted in nude mice with either a functional or inactivated IMOG device. The tumors in the mice were then exposed to ultrasonic power for 10 min, followed by a single fraction of 5 Gy radiation, and tumor growth was monitored thereafter. The 5 Gy irradiated tumors containing the functional IMOG exhibited tumor growth inhibition equivalent to that of 7 Gy irradiated tumors that did not contain an IMOG. Our study confirmed that an activated IMOG is able to produce sufficient oxygen to radiosensitize pancreatic tumors, enhancing response to single-dose radiation therapy.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere