BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Gioacchino Failla was initially appointed to operate the radon plant at Memorial Hospital in 1916. What to most people would have been a part-time temporary position was to him a career. He was not satisfied to simply fabricate radon seeds, he wanted to understand the physics and biology of the radiation emitted by the progeny of radium. His was not the first medical physics group in the United States, though it was one of the earliest, but it was the first to put such emphasis on the biological effects. After more than 28 years at Memorial Hospital, Failla moved his research group to Columbia University Medical Center and his pioneering work, blending physics and biology, has continued to date at Columbia by those that he trained or inspired, under three directors that followed him.
The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were developed in the mid-1970s. In 1980 the facility was relocated to the Nevis Laboratories of Columbia University. RARAF now has seven beam lines, each having a dedicated irradiation facility: monoenergetic neutrons, charged particle track segments, two charged particle microbeams (one electrostatically focused to <1 μm, one magnetically focused), a 4.5 keV soft X-ray microbeam, a neutron microbeam, and a facility that produces a neutron spectrum similar to that of the atomic bomb dropped at Hiroshima. Biology facilities are available on site within close proximity to the irradiation facilities, making the RARAF very user friendly.
The way cells respond to DNA damage is important since inefficient repair or misrepair of lesions can have deleterious consequences, including mutation, genomic instability, neurodegenerative disorders, premature aging, cancer or death. Whether damage occurs spontaneously as a byproduct of normal metabolic processes, or after exposure to exogenous agents, cells muster a coordinated, complex DNA damage response (DDR) to mitigate potential harmful effects. A variety of activities are involved to promote cell survival, and include DNA repair, DNA damage tolerance, as well as transient cell cycle arrest to provide time for repair before entry into critical cell cycle phases, an event that could be lethal if traversal occurs while damage is present. When such damage is prolonged or not repairable, senescence, apoptosis or autophagy is induced. One major level of DDR regulation occurs via the orchestrated transcriptional control of select sets of genes encoding proteins that mediate the response. p53 is a transcription factor that transactivates specific DDR downstream genes through binding DNA consensus sequences usually in or near target gene promoter regions. The profile of p53-regulated genes activated at any given time varies, and is dependent upon type of DNA damage or stress experienced, exact composition of the consensus DNA binding sequence, presence of other DNA binding proteins, as well as cell context. RAD9 is another protein critical for the response of cells to DNA damage, and can also selectively regulate gene transcription. The limited studies addressing the role of RAD9 in transcription regulation indicate that the protein transactivates at least one of its target genes, p21/waf1/cip1, by binding to DNA sequences demonstrated to be a p53 response element. NEIL1 is also regulated by RAD9 through a similar DNA sequence, though not yet directly verified as a bonafide p53 response element. These findings suggest a novel pathway whereby p53 and RAD9 control the DDR through a shared mechanism involving an overlapping network of downstream target genes. Details and unresolved questions about how these proteins coordinate or compete to execute the DDR through transcriptional reprogramming, as well as biological implications, are discussed.
Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models.
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1–1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.
The unique cellular and molecular consequences of cytoplasmic damage caused by ionizing radiation were studied using a precision microbeam irradiator. Our results indicated that targeted cytoplasmic irradiation induced metabolic shift from an oxidative to glycolytic phenotype in human small airway epithelial cells (SAE). At 24 h postirradiation, there was an increase in the mRNA expression level of key glycolytic enzymes as well as lactate secretion in SAE cells. Using RNA-sequencing analysis to compare genes that were responsive to cytoplasmic versus nuclear irradiation, we found a glycolysis related gene, Pim-1, was significantly upregulated only in cytoplasmic irradiated SAE cells. Inhibition of Pim-1 activity using the selective pharmaceutic inhibitor Smi-4a significantly reduced the level of lactate production and glucose uptake after cytoplasmic irradiation. In addition, Pim-1 also inhibited AMPK activity, which is a well-characterized negative regulator of glycolysis. Distinct from the glycolysis induced by cytoplasmic irradiation, targeted nuclear irradiation also induced a transient and minimal increase in glycolysis that correlated with increased expression of Hif-1α. In an effort to explore the underline mechanism, we found that inhibition of mitochondria fission using the cell-permeable inhibitor mdivi-1 suppressed the induction of Pim-1, thus confirming Pim-1 upregulation as a downstream effect of mitochondrial dysfunction. Our data show and, for the first time, that cytoplasmic irradiation mediate expression level of Pim-1, which lead to glycolytic shift in SAE cells. Additionally, since glycolysis is frequently linked to cancer cell metabolism, our findings further suggest a role of cytoplasmic damage in promoting neoplastic changes.
Radiation dermatitis is a serious cutaneous injury caused by radiation therapy or upon accidental nuclear exposure. However, the pathogenic immune mechanisms underlying this injury are still poorly understood. We seek to discover how the dysregulated immune response after irradiation orchestrates skin inflammation. The skin on the left flank of C57BL/6J wild-type and C57BL/6J Tcrd–/– mice, which are deficit in γδ T cells, was exposed to a single X-ray dose of 25 Gy, and the right-flank skin was used as a sham-irradiated control. At 4 weeks postirradiation, the wild-type skin exhibited signs of depilation, erythema and desquamation. Histological analysis showed hyperproliferation of keratinocytes and acanthosis. Dramatic elevation of IL17-expressing T cells was identified from the irradiated skin, which was mainly contributed by γδ T cells and innate lymphoid cells, rather than Th17 cells. Furthermore, protein levels of critical cytokines for IL17-expressing γδ T cell activation, IL1β and IL23 were found markedly upregulated. Lastly, radiation-induced dermatitis was significantly attenuated in γδ T cell knockout mice. In vitro, normal human epidermal keratinocytes (NHEKs) could be initiator cells of inflammation by providing a great number of pro-inflammatory mediators upon radiation, and as well as effector cells of epidermal hyperplasia in response to exogenous IL17 and/or IL22 treatment. Our findings implicate a novel role of IL17-expressing γδ T cells in mediating radiation-induced skin inflammation. This study reveals the innate immune response pathway as a potential therapeutic target for radiation skin injury.
Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device.
Health risks from space radiations, particularly from densely ionizing radiations, represent an important challenge for long-ranged manned space missions. Reliable methods are needed for scaling low-LET to high-LET radiation risks for humans, based on animal or in vitro studies comparing these radiations. The current standard metric, relative biological effectiveness (RBE) compares iso-effect doses of two radiations. By contrast, a proposed new metric, radiation effects ratio (RER), compares effects of two radiations at the same dose. This definition of RER allows direct scaling of low-LET to high-LET radiation risks in humans at the dose or doses of interest. By contrast to RBE, RER can be used without need for detailed information about dose response shapes for compared radiations. This property of RER allows animal carcinogenesis experiments to be simplified by reducing the number of tested radiation doses. For simple linear dose-effect relationships, RBE = RER. However, for more complex dose-effect relationships, such as those with nontargeted effects at low doses, RER can be lower than RBE. We estimated RBE and RER values and uncertainties using heavy ion (12C, 28Si, 56Fe) and gamma-ray-induced tumors in a mouse model for intestinal cancer (APC1638N/ ), and used both RBE and RER to estimate low-LET to high-LET risk scaling factors. The data showed clear evidence of nontargeted effects at low doses. In situations, such as the ones discussed here where nontargeted effects dominate at low doses, RER was lower than RBE by factors around 2.8–3.5 at 0.03 Gy and 1.3–1.4 at 0.3 Gy. It follows that low-dose high-LET human cancer risks scaled from low-LET human risks using RBE may be correspondingly overestimated.
Manuela Buonanno, Brian Ponnaiya, David Welch, Milda Stanislauskas, Gerhard Randers-Pehrson, Lubomir Smilenov, Franklin D. Lowy, David M. Owens, David J. Brenner
We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200–222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200–222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure.
We demonstrate the use of high-throughput biodosimetry platforms based on commercial high-throughput/high-content screening robotic systems. The cytokinesis-block micronucleus (CBMN) assay, using only 20 μl whole blood from a fingerstick, was implemented on a PerkinElmer cell::explorer and General Electric IN Cell Analyzer 2000. On average 500 binucleated cells per sample were detected by our FluorQuantMN software. A calibration curve was generated in the radiation dose range up to 5.0 Gy using the data from 8 donors and 48,083 binucleated cells in total. The study described here demonstrates that high-throughput radiation biodosimetry is practical using current commercial high-throughput/high-content screening robotic systems, which can be readily programmed to perform and analyze robotics-optimized cytogenetic assays. Application to other commercial high-throughput/high-content screening systems beyond the ones used in this study is clearly practical. This approach will allow much wider access to high-throughput biodosimetric screening for large-scale radiological incidents than is currently available.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere