BioOne.org will be down briefly for maintenance on 13 August 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Considerable attention has been given to understanding the biological effects of low-dose ionizing radiation exposure at levels slightly above background. However, relatively few studies have been performed to examine the inverse, where natural background radiation is removed. The limited available data suggest that organisms exposed to sub-background radiation environments undergo reduced growth and an impaired capacity to repair genetic damage. Shielding from background radiation is inherently difficult due to high-energy cosmic radiation. SNOLAB, located in Sudbury, Ontario, Canada, is a unique facility for examining the effects of sub-background radiation exposure. Originally constructed for astroparticle physics research, the laboratory is located within an active nickel mine at a depth of over 2,000 m. The rock overburden provides shielding equivalent to 6,000 m of water, thereby almost completely eliminating cosmic radiation. Additional features of the facility help to reduce radiological contamination from the surrounding rock. We are currently establishing a biological research program within SNOLAB: Researching the Effects of the Presence and Absence of Ionizing Radiation (REPAIR project). We hypothesize that natural background radiation is essential for life and maintains genomic stability, and that prolonged exposure to sub-background radiation environments will be detrimental to biological systems. Using a combination of whole organism and cell culture model systems, the effects of exposure to a sub-background environment will be examined on growth and development, as well as markers of genomic damage, DNA repair capacity and oxidative stress. The results of this research will provide further insight into the biological effects of low-dose radiation exposure as well as elucidate some of the processes that may drive evolution and selection in living systems. This Radiation Research focus issue contains reviews and original articles, which relate to the presence or absence of low-dose ionizing radiation exposure.
Ionizing radiation is known to effect development during early life stages. Lake whitefish (Coregonus clupeaformis) represent a unique model organism for examining such effects. The purpose of this study was to examine how ionizing radiation affects development in lake whitefish embryos and to investigate the presence of an adaptive response induced by heat shock. Acute exposure to 137Cs gamma rays was administered at five time points corresponding to major developmental stages, with doses ranging from 0.008 to 15.5 Gy. Chronic gamma-ray exposures were delivered throughout embryogenesis within a custom-built irradiator at dose rates between 0.06 and 4.4 mGy/day. Additionally, embryos were given a heat shock of 3, 6 or 9°C prior to a single acute exposure. Radiation effects were assessed based on survival, development rate, morphometric measurements and growth efficiency. Embryos showed high resistance to acute exposures with an LD50/hatch of 5.0 ± 0.7 Gy immediately after fertilization, increasing to 14.2 ± 0.1 Gy later in development. Chronic irradiation at all dose rates stimulated growth, with treated embryos up to 60% larger in body mass during development compared to unirradiated controls. Chronic irradiation also accelerated the time-to-hatch. A heat shock administered 6 h prior to irradiation reduced mortality by up to 25%. Overall, low-dose chronic irradiation caused growth stimulation in developing lake whitefish embryos and acute radiation mortality was reduced by a heat-shock-induced adaptive response.
Beneficial protective effects may result from an adaptive respose to low dose radiation exposure. However, such benefits must be accompanied by some form of cost because the responsible biological mechanisms are not normally maintained in an upregulated state. It has been suggested that stimulation of adaptive response mechanisms could be metabolically costly, or that the adaptive response could come at a sacrifice to other physiological processes. We exposed developing lake whitefish embryos to a fractionated regime of gamma radiation (662 keV; 0.3 Gy min–1) to determine whether radiation-stimulated growth was accompanied by a trade-off in metabolic efficiency. Developing embryos were exposed at the eyed stage to different radiation doses delivered in four fractions, ranging from 15 mGy to 8 Gy per fraction, with a 14 day separation between dose fractions. Dry weight and standard length measurements were taken 2–5 weeks after delivery of the final radiation exposure and yolk conversion efficiency was estimated by comparing the unpreserved dry weight of the yolk to the unpreserved yolk-free dry weight of the embryos and normalizing for size-related differences in somatic maintenance. Our results show that the irradiated embryos were 8–10% heavier than the controls but yolk conversion efficiency was slightly improved. This finding demonstrates that stimulated growth in developing lake whitefish embryos is not “paid for” by a trade-off in the efficiency of yolk conversion.
Computed tomography (CT) scans are a routine diagnostic imaging technique that utilize low-energy X rays with an average absorbed dose of approximately 10 mGy per clinical whole-body CT scan. The growing use of CT scans in the clinic has raised concern of increased carcinogenic risk in patients exposed to ionizing radiation from diagnostic procedures. The goal of this study was to better understand cancer risk associated with low-dose exposures from CT scans. Historically, low-dose exposure preceding a larger challenge dose increases tumor latency, but does little to impact tumor frequency in Trp53 /– mice. To assess the effects of CT scans specifically on tumor progression, whole-body CT scans (10 mGy/scan, 75 kVp) were started at four weeks after 4 Gy irradiation, to allow for completion of tumor initiation. The mice were exposed to weekly CT scans for ten consecutive weeks. In this study, we show that CT scans modify cellular end points commonly associated with carcinogenesis in cancer-prone Trp53 /– heterozygous mice. At five days after completion of CT scan treatment, the multiple CT scans did not cause detectable differences in bone marrow genomic instability, as measured by the formation of micronucleated reticulocytes and H2AX phosphorylation in lymphoid-type cells, and significantly lowered constitutive and radiation induced levels of apoptosis. The overall lifespan of 4 Gy exposed cancer-initiated mice treated with multiple CT scans was increased by approximately 8% compared to mice exposed to 4 Gy alone (P < 0.017). Increased latency periods for lymphoma and sarcoma (P < 0.040) progression contributed to the overall increase in lifespan. However, repeated CT scans did not affect carcinoma latency. To our knowledge, this is the first reported study to show that repeated CT scans, when administered after tumor initiation, can improve cancer morbidity by delaying the progression of specific types of radiation-induced cancers in Trp53 /– mice.
There is growing concern over the effects of medical diagnostic procedures on cancer risk. Although numerous studies have demonstrated that low doses of ionizing radiation can have protective effects including reduced cancer risk and increasing lifespan, the hypothesis that any radiation exposure increases cancer risk still predominates. In this study, we investigated cancer development and longevity of cancer-prone Trp53 /– mice exposed at 7–8 weeks of age to a single 10 mGy dose from either a diagnostic CT scan or gamma radiation. Mice were monitored daily for adverse health conditions until they reached end point. Although the median lifespan of irradiated mice was extended compared to control animals, only CT scanned mice lived significantly longer than control mice (P < 0.004). There were no differences in the frequency of malignant cancers between the irradiated and control groups. Exposure to a single CT scan caused a significant increase in the latency of sarcoma and carcinoma (P < 0.05), accounting for the increased lifespan. This study demonstrates that low-dose exposure, specifically a single 10 mGy CT scan, can prolong lifespan by increasing cancer latency in cancer-prone Trp53 /– mice. The data from this investigation add to the large body of evidence, which shows that risk does not increase linearly with radiation dose in the low-dose range.
Cellular transformation assays have been utilized for many years as powerful in vitro methods for examining neoplastic transformation potential/frequency and mechanisms of carcinogenesis for both chemical and radiological carcinogens. These mouse and human cell based assays are labor intensive but do provide quantitative information on the numbers of neoplastically transformed foci produced after carcinogenic exposure and potential molecular mechanisms involved. Several mouse and human cell systems have been generated to undertake these studies, and they vary in experimental length and endpoint assessment. The CGL1 human cell hybrid neoplastic model is a non-tumorigenic pre-neoplastic cell that was derived from the fusion of HeLa cervical cancer cells and a normal human skin fibroblast. It has been utilized for the several decades to study the carcinogenic/neoplastic transformation potential of a variety of ionizing radiation doses, dose rates and radiation types, including UV, X ray, gamma ray, neutrons, protons and alpha particles. It is unique in that the CGL1 assay has a relatively short assay time of 18–21 days, and rather than relying on morphological endpoints to detect neoplastic transformation utilizes a simple staining method that detects the tumorigenic marker alkaline phosphatase on the neoplastically transformed cells cell surface. In addition to being of human origin, the CGL1 assay is able to detect and quantify the carcinogenic potential of very low doses of ionizing radiation (in the mGy range), and utilizes a neoplastic endpoint (re-expression of alkaline phosphatase) that can be detected on both viable and paraformaldehyde fixed cells. In this article, we review the history of the CGL1 neoplastic transformation model system from its initial development through the wide variety of studies examining the effects of all types of ionizing radiation on neoplastic transformation. In addition, we discuss the potential of the CGL1 model system to investigate the effects of near zero background radiation levels available within the radiation biology lab we have established in SNOLAB.
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Radiation therapy has become one of the main forms of treatment for various types of cancers. Cancer patients previously treated with high doses of radiation are at a greater risk to develop cardiovascular complications later in life. The heart can receive varying doses of radiation depending on the type of therapy and can even reach doses in the range of 17 Gy. Multiple studies have highlighted the role of oxidative stress and inflammation in radiation-induced cardiovascular damage. Doses of ionizing radiation below 200 mGy, however, have been shown to have beneficial effects in some experimental models of radiation-induced damage, but low-dose effects in the heart is still debated. Low-dose radiation may promote heart health and reduce damage from oxidative stress and inflammation, however there are few studies focusing on the impact of low-dose radiation on the heart. In this review, we summarize recent studies from animal models and human data focusing on the effects and mechanism(s) of action of radiation-induced damage to the heart, as well as the effects of high and low doses of radiation and dose rates.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere