Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Signal transduction at sensory neurons occurs via transmembrane flux of cations, which is largely governed by the transient receptor potential (TRP) family of ion channels. It is unknown whether TRP channel activation contributes to the pain that accompanies radiation-induced oral mucositis. This study sought to characterize changes in TRP channel expression and function that occur in the locally irradiated tissues and afferent neurons of mice. Female CD-1 mice received single high-dose (27 Gy) tongue irradiation, or sham irradiation. Animals were euthanized either before overt glossitis developed (days 1 and 5 postirradiation), when glossitis was severe (day 11), or after mice had recovered (days 21 and 45). Tongue irradiation caused upregulation of the Trpv1 gene in trigeminal ganglia (TG) neurons. Other TRP genes (Trpv2, Trpv4, Trpa1, Trpm8) and Gfrα3 (which acts upstream of several TRP channels) were also upregulated in TGs and/or tongue tissue, in response to radiation. Ex vivo calcium imaging experiments demonstrated that the proportions of TG neurons responding to histamine (an activator of TRPV1, TRPV4 and TRPA1), TNF-α (an activator of TRPV1, TRPV2 and TRPV4), and capsaicin (a TRPV1 agonist), were increased as early as one day after tongue irradiation; these changes persisted for at least 21 days. In a subsequent experiment, we found that genetic deletion of TRPV1 mitigated weight loss (a surrogate marker of pain severity) in mice with severe glossitis. The results intimate that various TRP channels, and TRPV1 in particular, should be explored as analgesic targets for patients experiencing pain after oral irradiation.
Astronauts on the planned mission to Mars will be exposed to galactic cosmic radiation (GCR), with proton and He particles accounting (in approximately equal amounts) for ∼75% of the equivalent dose. Exposure to ≤15 cGy of space radiation ions with Z ≥ 15 particles has been shown to impair various executive functions, including attentional set shifting and creative problem-solving in rats. Executive functions also regulate social interactions and mood. Should space radiation exposure alter these executive functions as it does cognitive flexibility, there is the possibility of altered interactions among crew members and team cooperativity during prolonged space exploration. This study characterized the effects of ≤10 cGy 400 MeV/n of 4He particles on cognitive flexibility and social interaction (within freely interacting dyads) in male Wistar rats. Exposure to ≥1 cGy 4He ions induced deficits in the SD and/or CD stages of the attentional set shifting (ATSET) task, as reported after exposure to Z ≥ 15 space radiation ions. Should similar effects occur in astronauts, these data suggest that they would have a reduced ability to identify key events in a new situation and would be more easily distracted by extraneous variables. The irradiated rats were also screened for performance in a task for unconstrained cognitive flexibility (UCFlex), often referred to as creative problem-solving. There was a marked dose-dependent change in UCFlex performance with ∼30% of rats exposed to 10 cGy being unable to solve the problem, while the remaining rats took longer than the sham-irradiated animals to resolve the problem. Importantly, performance in the ATSET test was not indicative of UCFlex performance. From a risk assessment perspective, these findings suggest that a value based on a single behavioral end point may not fully represent the cognitive deficits induced by space radiation, even within the cognitive flexibility domain. Rats that received 5 cGy 4He ion irradiation had a significantly lower level of interaction toward their sham-irradiated partners in a non-anxiogenic (uncaged) dyad interactions study. This is consistent with the social withdrawal previously observed in space radiation-exposed male mice in a three-chamber test. 4He-irradiated rats exhibited a significantly higher incidence and duration of self-grooming, which is even more concerning, given that their dyad partners were able to physically interact with the irradiated rats (i.e., touching/climbing over them). This study has established that exposure of male rats to “light” ions such as He affects multiple executive functions resulting in deficits in both sociability and cognitive flexibility, and possibly affective behavior (reward valuation). Further studies are needed to determine if these space radiation-induced co-morbidities are concomitantly induced within individual rats.
Synchrotron microbeam radiation therapy (MRT) is a preclinical irradiation technique which could be used to treat intracranial malignancies. The goal of this work was to discern differences in gene expression and the predicted regulation of molecular pathways in the brainstem after MRT versus synchrotron broad-beam radiation therapy (SBBR). Healthy C57BL/6 mice received whole-head irradiation with median acute toxic doses of MRT (241 Gy peak dose) or SBBR (13 Gy). Brains were harvested 4 and 48 h postirradiation and RNA was extracted from the brainstem. RNA-sequencing was performed to identify differentially expressed genes (false discovery rate < 0.01) relative to nonirradiated controls and significantly regulated molecular pathways and biological functions were identified (Benjamini-Hochberg corrected P < 0.05). Differentially expressed genes and regulated pathways largely reflected a pro-inflammatory response 4 h after both MRT and SBBR which was sustained at 48 h postirradiation for MRT. Pathways relating to radiation-induced viral mimicry, including HMGB1, NF-κB and interferon signaling cascades, were predicted to be uniquely activated by MRT. Local microglia, as well as circulating leukocytes, including T cells, were predicted to be activated by MRT. Our findings affirm that the transcriptomic signature of MRT is distinct from broad-beam radiotherapy, with a sustained inflammatory and immune response up to 48 h postirradiation.
Oral mucositis is a common adverse reaction of radiotherapy used for head and neck cancers. Our research investigates the therapeutic effect and potential mechanisms of ecdysterone, a compound which was used as a functional food additive, isolated from the root of medicine-food herbs Achyranthes bidentata (Blume), on radiation-induced oral mucositis in rats during the early development stages of mucositis. In this study, male Sprague-Dawley rats received a single 20 Gy X-ray dose to the head and neck after placement of each animal in a specially-constructed 5-mm lead jig. At 24 h postirradiation, ecdysterone was administrated orally. Therapeutic effects of ecdysterone were investigated by observing weight changes and development of mucositis on days 5 and 10 after treatment. Determination of superoxide dismutase and malondialdehyde concentration was performed 5 days after treatment. H&E and leukocyte common antigen staining and TUNEL assays were performed 10 days after treatment. After 10 days of treatment, total protein from the tongue samples was extracted and Western blot analysis was performed to evaluate changes in protein expression. The results of this study showed that ecdysterone prevented the development of radiation-induced oral mucositis in rats during the early stages. Ecdysterone significantly attenuated radiation-induced decrease in cellular superoxide dismutase concentration and increase in malondialdehyde concentration. Ecdysterone was also linked to up-regulation of anti-apoptotic protein Bcl-2 and down-regulation of pro-apoptotic proteins Bax and cleaved caspase-3. In conclusion, these findings suggest that orally administrated ecdysterone alleviates the development of radiation-induced oral mucositis in rats with remarkable anti-oxidant and anti-apoptotic activities at early stages after irradiation.
Tetraiodothyroacetic acid is a ligand of thyrointegrin αvβ3, a protein that is highly expressed in various solid tumors and surrounding neovascular regions. Its nano derivative, Nano-diamino-tetrac (NDAT), has anticancer properties in preclinical models, enhances radiosensitivity, and inhibits cancer cell growth in vitro after X-ray irradiation. Using a novel experimental system developed to deliver accurate radiation dose to tumors under sterile conditions, this study establishes NDAT's radiosensitizing effect in SUIT-2 pancreatic cancer and H1299 non-small cell lung carcinoma xenografts in athymic mice for tumor-targeted radiation. In this work, low-melting-point Lipowitz alloy was used to shield normal organs and allow accurate tumor-targeted irradiation. Over a three-week period, mice with SUIT-2 xenografts received daily NDAT treatment at different doses (0, 1, 3, or 10 mg/kg body weight) and tumor-targeted irradiation (1 or 5 Gy). Validation was performed with a test dose of 30 Gy to mice bearing SUIT-2 xenografts and resulted in more than 80% reduction in tumor weight, compared to nonirradiated tumor weight. The results of this work showed that NDAT had a radiosensitizing effect in a dose-dependent manner in decreasing tumor growth and viability. An enhanced anticancer effect of NDAT (1 mg/kg body weight) was observed in mice with H1299 xenografts receiving 5 Gy tumor-targeted irradiation, indicated by decreased tumor weight and increased necrosis, compared to nonirradiated tumors. This technique demonstrated accurate tumor-targeted irradiation with new shielding methodology, and combined with thyrointegrin antagonist NDAT treatment, showed anticancer efficacy in pancreatic cancer and non-small cell lung carcinoma.
Calculation of the biological effective dose (BED) of a fractionated course of hadron particle radiation (e.g., protons or carbon ions) administered via a spread-out Bragg peak (SOBP) to a population of cells with heterogeneous radiosensitivity is described. The calculated BED has the important property that, if equal to that of a course of photon radiation, the particle course will result in the same fraction of cells of the exposed population that survive and can be expected to have the same clinical effect. The calculated BED provides a way to relate the effect of a planned treatment course with particle radiation to clinical experience of the effects of treatment with low-LET photon radiation.
Sequelae after pediatric cranial radiotherapy (CRT) result in long-term changes in brain structure. While past evidence indicates regional differences in brain volume change, it remains unclear how these manifest in the time course of change after CRT. In this study, we spatiotemporally characterized volume losses induced by cranial irradiation in a mouse model, with a dense sampling of measurements over the first week postirradiation. Wild-type mice received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In vivo magnetic resonance imaging was performed at one time point before, and 2–4 time points postirradiation in each mouse, with a particular focus on sampling during the first week after cranial irradiation. Volume changes across the brain were measured, and the degree and timing of volume loss were quantified across structures from a predefined atlas. Volume measurements across the brain after cranial irradiation revealed a ∼2-day delay in which volume is not significantly altered, after which time volume change proceeds over the course of four days. Volume losses were 3% larger and emerged 40% slower in white matter than in gray matter. Large volume loss was also observed in the ventricles. Differences in the timing and magnitude of volume change between gray and white matter after cranial irradiation were observed. These results suggest differences in the mechanism and/or kinetics underlying the associated radio-response, which may have implications in development.
Microwave (MW) radiation poses the risk of potential hazards on human health. The present study investigated the effects of MW 10 GHz exposure for 3 h/day for 30 days at power densities of 5.23 ± 0.25 and 10.01 ± 0.15 mW/cm2 in the skin of rats. The animals exposed to 10 mW/cm2 (corresponded to twice the ICNIRP-2020 occupational reference level of MW exposure for humans) exhibited significant biophysical, biochemical, molecular and histological alterations compared to sham-irradiated animals. Infrared thermography revealed an increase in average skin surface temperature by 1.8°C and standard deviation of 0.3°C after 30 days of 10 mW/cm2 MW exposure compared to the sham-irradiated animals. MW exposure also led to oxidative stress (ROS, 4-HNE, LPO, AOPP), inflammatory responses (NFkB, iNOS/NOS2, COX-2) and metabolic alterations [hexokinase (HK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6-phospahte dehydrogenase (G6PD)] in 10 mW/cm2 irradiated rat skin. A significant alteration in expression of markers associated with cell survival (Akt/PKB) and HSP27/p38MAPK-related stress-response signaling cascade was observed in 10 mW/cm2 irradiated rat skin compared to sham-irradiated rat skin. However, MW-irradiated groups did not show apoptosis, evident by unchanged caspase-3 levels. Histopathological analysis revealed a mild cytoarchitectural alteration in epidermal layer and slight aggregation of leukocytes in 10 mW/cm2 irradiated rat skin. Altogether, the present findings demonstrated that 10 GHz exposure in continuous-wave mode at 10 mW/cm2 (3 h/day, 30 days) led to significant alterations in molecular markers associated with adaptive stress-response in rat skin. Furthermore, systematic scientific studies on more prevalent pulsed-mode of MW-radiation exposure for prolonged duration are warranted.
This commentary considers research needs for radiofrequency (RF) energy above 6 GHz, including in the “high band” of 5G New Radio (NR) communications systems that exists just beneath the mm-wave band (30–300 GHz). As of late 2020, approximately 100 RF bioeffects studies have been published involving exposures above 6 GHz, encompassing a wide range of exposure levels and frequencies. A majority of these studies report statistically significant effects of exposure, many at exposures within international safety limits. This commentary examines 31 genetic damage studies involving RF exposures above 6 GHz in the context of two sets of quality-assessment criteria: 1. “Risk of bias” (RoB) criteria used for systematic reviews of health-related studies; and 2. a broader set of criteria for research quality from a different scholarly approach (metascience). The 31 studies report several statistically significant effects of exposure on different markers for genetic damage. These effects, if real, would have great potential significance for carcinogen risk assessment. However, the studies as a group have significant technical weaknesses, including small size, failure to meet multiple RoB criteria, naïve use of statistics, and lack of prespecified hypotheses and methods of analysis, all of which increase the chances of false discovery. Here we propose a “carrot” (adequate funding to support high-quality research) and a “stick” (more stringent review of bioeffects manuscripts, including explicit instructions to reviewers to assess study quality) approach to increase the reliability of RF bioeffects studies to facilitate health agency reviews of this socially controversial topic.
Nicotinamide phosphoribosyltransferase (NAMPT) is the key rate-limiting enzyme in the regulation of nicotinamide adenine dinucleotide (NAD) biosynthesis, and its activity is critical for the replenishment of NAD level as well as cell survival or death. As one of the most important components in the electron transport chain of complex I in mitochondrion, sustained supply of NAD is essential to the maintenance of energy metabolism both in normal and cancer cells. Recent research showed that X-ray radiation sharply downregulated the expression of NAMPT, which may be the main cause of radiation damage in salivary gland. Consistently, upregulation of NAMPT by phenylephrine restored the function and tissue structure of salivary gland, indicating the cytoprotective role of NAMPT in preventing radiation damage in normal tissues of patients with head and neck cancer during radiotherapy. On the other hand, NAMPT downregulation and NAD depletion could induce cell death in oral squamous cell cancer, suggesting that a combination of NAMPT inhibitor and radiotherapy presents a promising therapeutic strategy for cancer treatment. Based on our and other's studies, NAMPT may have dual roles in cancer radiotherapy: the upregulation of NAMPT could serve to suppress radiotherapy complications such as radiation sialadenitis, and combination regimens that involve NAMPT inhibitors may enhance efficacy of radiotherapy for cancer treatment.
The National Institute of Allergy and Infectious Diseases, Radiation and Nuclear Countermeasures Program, was tasked by the United States Congress and the U.S. Department of Health and Human Services to identify and fund early-to-mid-stage development of medical countermeasures (MCMs) to treat radiation-induced injuries. In developing MCMs to treat various sub-syndromes (e.g., hematopoietic, gastrointestinal, lung), it is important to investigate whether a poly-pharmacy approach (i.e., drug cocktails) can provide additive benefits to mitigate injuries arising from the acute radiation syndrome (ARS). In addition, potential drug-drug interactions must be examined. For this reason, a workshop was held, which centered on understanding the current state of research investigating poly-pharmacy approaches to treat radiation injuries. The first session set the stage with an introduction to the concept of operations or support available for the response to a nuclear incident, as this is the key to any emergency response, including MCM availability and distribution. The second session followed the natural history of ARS in both humans and animal models to underscore the complexity of ARS and why a poly-pharmacy approach may be necessary. The third session featured talks from investigators conducting current MCM poly-pharmacy research. The meeting closed with a focus on regulatory considerations for the development of poly-pharmacy approaches or combination treatments for ARS.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere