BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
We present an extension of the Local Effect Model (LEM) to include time-dose relationships for predicting effects of protracted and split-dose ion irradiation at arbitrary LET. With this kinetic extension, the spatial and temporal induction and processing of DNA double strand breaks (DSB) in cellular nuclei can be simulated for a wide range of ion radiation qualities, doses and dose rates. The key concept of the extension is based on the joint spatial and temporal coexistence of initial DSB, leading to the formation of clustered DNA damage on the µm scale (as defined e.g., by the size scale of Mbp chromatin loops), which is considered to have an increased cellular lethality as compared to isolated, single DSB. By simulating the time dependent induction and repair of DSB and scoring of isolated and clustered DSB upon irradiation, the impact of dose rate and split dose on the cell survival probability can be computed. In a first part of this work, we systematically analyze the predicted impact of protraction in dependence of factors like dose, LET, ion species and radiosensitivity as characterized by the photon LQ-parameters. We establish links to common concepts that describe dose rate effects for low LET radiation. We also compare the model predictions to experimental data and find agreement with the general trends observed in the experiments. The relevant concepts of our approach are compared to other models suitable for predicting time effects. We investigate an apparent analogy between spatial and temporal concentration of radiation delivery, both leading to increased effectiveness, and discuss similarities and differences between the general dependencies of these clustering effects on their impacting factors. Finally, we conclude that the findings give additional support for the general concept of the LEM, i.e. the characterization of high LET radiation effects based on the distinction of just two classes of DSB (isolated DSB and clustered DSB).
We report the dose rate dependence of radiation chemical yields (G value) of water radiolysis products under clinical energy protons (230 MeV) to understand mechanisms of the FLASH radiotherapy performed at ultra-high dose rate (>40 Gy/s). The G value of 7-hydoroxy-coumarin-3-carboxylic acid (7OH-C3CA) produced by reactions of coumarin-3-carboxylic acid (C3CA) with OH radicals and oxygen is evaluated by fluorescence method. Also, those of hydrated electrons and hydrogen peroxide are derived by absorption method using Saltzman and Ghomley techniques, respectively. Both G values of 7OH-C3CA and hydrated electrons decrease with increasing dose rate. The relative evolution of 7OH-C3CA is –39 6 2% between 0.1 and 50 Gy/s. This value is higher than that of hydrated electrons, measured at –21 6 4%. The G value of hydrogen peroxide in ultra-pure water also decreases with increasing dose rate. In comparison to these findings, we represent the increase of the G value of hydrogen peroxide with increasing dose rate in the mixture solution of MeOH and NaNO3, which act as scavengers of OH radicals and hydrated electrons, respectively, that decompose hydrogen peroxide. This finding indicates that a complex track structure can be expected with increasing dose rate and the reduction of OH radicals by forming hydrogen peroxide would be related to the sparing effect of healthy tissues.
Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed c-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.
In radiation risk estimation based on the Radiation Effects Research Foundation (RERF) cohort studies, one common analysis is Poisson regression on radiation dose and background and effect modifying variables of an aggregate endpoint such as all solid cancer incidence or all non-cancer mortality. As currently performed, these analyses require selection of a surrogate radiation organ dose, (e.g., colon dose), which could conceptually be problematic since the aggregate endpoint comprises events arising from a variety of organs. We use maximum likelihood theory to compare inference from the usual aggregate endpoint analysis to analyses based on joint analysis. These two approaches are also compared in a re-analysis of RERF Life Span Study all cancer mortality. We show that, except for a trivial difference, these two analytic approaches yield identical inference with respect to radiation dose response and background and effect modification when based on a single surrogate organ radiation dose. When repeating the analysis with organ-specific doses, an interesting issue of bias in intercept parameters arises when dose estimates are undefined for one sex when sex-specific outcomes are included in the aggregate endpoint, but a simple correction will avoid this issue. Lastly, while the joint analysis formulation allows use of organ-specific doses, the interpretation of such an analysis for inference regarding an aggregate endpoint can be problematic. To the extent that analysis of radiation risk for an aggregate endpoint is of interest, the joint-analysis formulation with a single surrogate dose is an appropriate analytic approach, whereas joint analysis with organ-specific doses may only be interpretable if endpoints are considered separately for estimating dose response. However, for neither approach is inference about dose response well defined.
The increased expression of Copine 1 (CPNE1) has been observed in various cancers, which promotes cell proliferation, apoptosis, and radio resistance. However, the potential mechanism of CPNE1 in nasopharyngeal carcinoma (NPC) remains elusive. Consequently, our objective was to investigate the role of CPNE1 in regulating proliferation and radio resistance of NPC. CPNE1 expression in NPC and normal patients were obtained from Cancer Genome Atlas (TCGA) database. An elevated CPNE1 was observed in NPC patients and cells (C666-1, SUNE-1, and HNE-1). Then, C666-1 and SUNE-1 cells were subjected to si-CPNE1 under different radiations (0–8 Gy). Cell growth and proliferation were measured by CCK8 and EDU assays, which demonstrated si-CPNE1 suppressed proliferation. Colony formation was performed to detect cell viability under different radiation therapy and survival curve of cell was plotted, which indicated that CPNE1 knockdown improved cell radiosensitivity. Additionally, flow cytometry showed silence of CPNE1 enhanced apoptosis rate in radiated cells. To further investigate the mechanisms of CPNE1 regulating NPC, the expression of activated phosphate Akt (p-Akt) was assessed through western blotting. We observed elevated p-Akt in si-CPNE1 transfected C666-1 and SUNE-1 cells. In conclusion, these results demonstrated that CPNE1 expression is elevated in nasopharyngeal carcinoma cells, and its silencing could attenuate nasopharyngeal carcinoma advancement and improve radiosensitivity to radiation therapy by controlling Akt activation.
The search for medical treatments to prevent radiation-induced damage to gastrointestinal tissue is crucial as such injuries can be fatal. This study aimed to investigate the effects of apigenin (AP) on the gut microbiome of irradiated mice, as it is a promising radiation countermeasure. Male C57BL/6J mice were divided into four groups, with six mice in each group. Two groups were given food with apigenin (20 mg/kg body weight or AP 20) before and after exposure to 0 or 50 cGy of silicon (28Si) ions, while another two groups of mice received regular diet without apigenin (0 mg/kg body weight or AP 0) before and after irradiation. The duodenum, the primary site for oral AP absorption, was collected from each mouse seven days after radiation exposure. Using 16S rRNA amplicon sequencing, we found significant differences in microbial diversity among groups. Firmicutes and Bacteroidetes were the major phyla for all groups, while actinobacterial and proteobacterial sequences represented only a small percentage. Mice not given dietary apigenin had a higher Firmicutes and Bacteroidetes (F/B) ratio and an imbalanced duodenal microbiota after exposure to radiation, while irradiated mice given apigenin had maintained homeostasis of the microbiota. Additionally, irradiated mice not given apigenin had decreased probiotic bacteria abundance and increased inflammation, while apigenin-supplemented mice had reduced inflammation and restored normal histological structure. In conclusion, our results demonstrate the potential of dietary apigenin as a countermeasure against radiation-induced gut injuries due to its anti-inflammatory activity, reduction of gut microbiota dysbiosis, and increase in probiotic bacteria (e.g., Lachnospiraceae, Muribaculaceae and Bifidobacteriaceae).
Developing and maintaining a robust and diverse scientific workforce is crucial to advance knowledge, drive innovation, and tackle societal issues that impact the economy and human health. The shortage of trained professionals in radiation and nuclear sciences derives from many factors, such as scarcity of specialized coursework, programming, professional development, and experiential learning at educational institutions, which significantly disrupt the training pipeline. Other challenges include small numbers of faculty and educators with specialized radiation/nuclear expertise that are continually overextended professionally and scientifically, with the burden of training falling on this subset of individuals. Even more alarming is the recent loss of radiobiologists due to increased retirements and deaths, leaving the radiobiology community with a void of mentors and knowledge. Lastly, inconsistency in acquiring stable grant funding to recruit and retain scientists is a major hurdle to training the next generation of radiation and nuclear scientists. Recommendations from the scientific community and the National Academies of Sciences, Engineering, and Medicine describe the need to bolster educational resources and provide more hands-on training experiences. Of equal importance was the suggestion that funding agencies provide more opportunities for training and tracking the radiation workforce. The Radiation and Nuclear Countermeasures Program (RNCP), and the Office of Research Training and Special Programs (ORTSP), both within the National Institute of Allergy and Infectious Diseases (NIAID) are committed to helping to develop and sustain the radiation research workforce. This commentary illustrates the importance of addressing radiation workforce development and outlines steps that the RNCP is taking to help mitigate the issue. In addition, the role for Diversity, Equity, Inclusion, and Accessibility (DEIA) in helping to increase the number of students trained in the radiation sciences is discussed, and the NIH's DEIA priorities and RNCP efforts to improve DEIA in the research community are highlighted. One of the main goals of this commentary is to provide awareness of available educational (i.e., development of a radiation biologist eBook) and funding resources. A summary of available awards targeting early- to mid-stage investigators and diversity candidates is given, and it is hoped that this list, although not exhaustive and not specific for all focus areas in radiation (e.g., cancer research), will encourage more radiation biologists to explore and apply to these under-utilized opportunities.
The U.S. Government is committed to maintaining a robust research program that supports a portfolio of scientific experts who are investigating the biological effects of radiation exposure. On August 17 and 18, 2023, the Radiation and Nuclear Countermeasures Program, within the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), partnered with the National Cancer Institute, NIH, the National Aeronautics and Space Administration, and the Radiation Injury Treatment Network to convene a workshop titled, Advanced Technologies in Radiation Research (ATRR), which focused on the use of advanced technologies under development or in current use to accelerate radiation research. This meeting report provides a comprehensive overview of the research presented at the workshop, which included an assembly of subject matter experts from government, industry, and academia. Topics discussed during the workshop included assessments of acute and delayed effects of radiation exposure using modalities such as clustered regularly interspaced short palindromic repeats (CRISPR) – based gene editing, tissue chips, advanced computing, artificial intelligence, and immersive imaging techniques. These approaches are being applied to develop products to diagnose and treat radiation injury to the bone marrow, skin, lung, and gastrointestinal tract, among other tissues. The overarching goal of the workshop was to provide an opportunity for the radiation research community to come together to assess the technological landscape through sharing of data, methodologies, and challenges, followed by a guided discussion with all participants. Ultimately, the organizers hope that the radiation research community will benefit from the workshop and seek solutions to scientific questions that remain unaddressed. Understanding existing research gaps and harnessing new or re-imagined tools and methods will allow for the design of studies to advance medical products along the critical path to U.S. Food and Drug Administration approval.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere